6£®°´ÒªÇóÍê³ÉÏÂÁи÷Ì⣮
£¨1£©½â²»µÈʽ×鲢д³öÆäÕûÊý½â
$\left\{\begin{array}{l}{5x+2¡Ý3£¨x-1£©}\\{1-\frac{2x+5}{3}£¾x-2}\end{array}\right.$
£¨2£©½âÏÂÁв»µÈʽ×é
$\left\{\begin{array}{l}{\frac{1-2x}{3}-\frac{4-3x}{6}¡Ý\frac{x-2}{2}}\\{2x-7¡Ü3£¨x-1£©}\end{array}\right.$£®

·ÖÎö £¨1£©Çó³öÿ¸ö²»µÈʽµÄ½â¼¯£¬¸ù¾ÝÕÒ²»µÈʽ×é½â¼¯µÄ¹æÂÉÕÒ³ö¼´¿É£®
£¨2£©Çó³öÿ¸ö²»µÈʽµÄ½â¼¯£¬¸ù¾ÝÕÒ²»µÈʽ×é½â¼¯µÄ¹æÂÉÕÒ³ö¼´¿É£®

½â´ð ½â£º£¨1£©$\left\{\begin{array}{l}{5x+2¡Ý3£¨x-1£©¢Ù}\\{1-\frac{2x+5}{3}£¾x-2¢Ú}\end{array}\right.$
¡ß½â²»µÈʽ¢ÙµÃ£ºx$¡Ý-\frac{5}{2}$£¬
½â²»µÈʽ¢ÚµÃ£ºx£¼$\frac{4}{5}$£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª£º-$\frac{5}{2}$¡Üx£¼$\frac{4}{5}$£¬
¼´²»µÈʽ×éµÄÕûÊý½âΪ£º-2£¬-1£¬0£®
£¨2£©$\left\{\begin{array}{l}{\frac{1-2x}{3}-\frac{4-3x}{6}¡Ý\frac{x-2}{2}¢Ù}\\{2x-7¡Ü3£¨x-1£©¢Ú}\end{array}\right.$
½â²»µÈʽ¢ÙµÃ£ºx¡Ü1£¬
½â²»µÈʽ¢ÚµÃ£ºx¡Ý-4£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª£º-4¡Üx¡Ü1£¬

µãÆÀ ±¾Ì⿼²éÁ˽âÒ»ÔªÒ»´Î²»µÈʽ£¨×飩£¬Ò»ÔªÒ»´Î²»µÈʽ×éµÄÕûÊý½âµÄÓ¦Ó㬹ؼüÊÇÄܸù¾Ý²»µÈʽµÄ½â¼¯ÕÒ³ö²»µÈʽ×éµÄ½â¼¯£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÒÑÖªÕý·½ÐÎABCD¶¥µãA£¨0£¬0£©£¬B£¨4£¬0£©£¬Ò»·´±ÈÀýº¯ÊýͼÏó¹ý¶¥µãC£¬¶¯µãPÒÔÿÃë1¸öµ¥Î»µÄËٶȴӵãA³ö·¢ÑØAB·½ÏòÔ˶¯£¬Í¬Ê±¶¯µãQÒÔÿÃë4¸öµ¥Î»µÄËٶȴӵãD³ö·¢ÑØDC-CB-BA·½ÏòÕÛÏßÔ˶¯£¬µ±µãPÓëµãQÏàÓöʱ¾ùÍ£Ö¹Ô˶¯£¬ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룮

£¨1£©¸Ã·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{16}{x}$£»
£¨2£©ÈôËıßÐÎPBQDΪƽÐÐËıßÐΣ¬ÇótµÄÖµ£»
£¨3£©Èô¡÷BDQµÄÃæ»ýΪS£¬Çó³öSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬Ö¸³öÏàÓ¦tµÄÈ¡Öµ·¶Î§£¬²¢Ö±½Óд³öSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬ÔÚ?ABCDÖУ¬APºÍBP·Ö±ðƽ·Ö¡ÏDABºÍ¡ÏCBA£¬PQ¡ÎAD£¬ÈôAD=5cm£¬AP=8cm£¬Ôò¡÷ABPµÄÃæ»ýµÈÓÚ24cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èô2a=5£¬2b=6£¬Ôò22a-bµÄֵΪ$\frac{25}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺
£¨1£©£¨-2£©2+£¨2000-2017£©0-£¨$\frac{1}{2}$£©-2£»
£¨2£©£¨-2x4£©2+2x2•£¨-2x2£©3+2x4•5£¨x2£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÈçͼµÄƽÃæÖ±½Ç×ø±êϵÖУ¬µãA£¬B£¬C¶¼ÔÚÕý·½ÐÎÍø¸ñµÄ¸ñµãÉÏ£¬ÇÒÿ¸öСÕý·½Ðεı߳¤Îª1£®
£¨1£©Ð´³öµãA£¬B£¬CµÄ×ø±ê£¨-2£¬-1£©£¬£¨0£¬2£©£¬£¨3£¬-1£©£»
£¨2£©½«¡÷ABCÑØxÖá·½ÏòÏò×óƽÒÆ3¸öµ¥Î»µÃµ½¡÷A1B1C1£¬ÔÚÈçͼÖл­³ö¡÷A1B1C1£¬²¢Ö±½Óд³öµãA1µÄ×ø±ê£º£¨-5£¬-1£©£»
£¨3£©ÒÑÖª¡÷ABC¹ØÓÚxÖá¶Ô³ÆͼÐÎÊÇ¡÷A2B2C2£¬ÔÚÈçͼÖл­³ö¡÷A2B2C£¬²¢Ö±½Óд³öµãB1£¬B2Ö®¼äµÄ¾àÀ룺5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$ºÍ$\left\{\begin{array}{l}{x=-2}\\{y=4}\end{array}\right.$¶¼ÊÇ·½³Ìy=kx+bµÄ½â£¬ÔòkºÍbµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=3}\end{array}\right.$B£®$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=-1}\end{array}\right.$C£®$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=-1}\end{array}\right.$D£®$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=5}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£ºÒÑÖªm=$\frac{4}{\sqrt{5}-1}$£¬Çó$\frac{{m}^{2}-5m+6}{{m}^{2}-3m}$¡Â$\frac{m-2}{{m}^{2}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®½«µãP£¨-3£¬4£©ÏÈÏòÏÂƽÒÆ3¸öµ¥Î»£¬ÔÙÏòÓÒƽÒÆ2¸öµ¥Î»ºóµÃµ½µãQ£¬ÔòµãQµÄ×ø±êÊÇ£¨-1£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸