精英家教网 > 初中数学 > 题目详情

如图(1)所示,梯形ABCD中,AD∥BC,AB=DC.

(1)如果P,E,F分别是BC,AC,BD的中点.求证AB=PE+PF;

(2)如果P是BC上的任意一点(中点除外),PE∥AB,PF∥DC.

如图(2)所示,那么AB=PE+PF这个结论还成立吗?如果成立,请证明;如果不成立,请说明理由.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,求梯形ABCD的高CD的长.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

(满分13分)如图12.1,已知抛物线经过坐标原点Ox轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,ADAB分别在x轴、y轴上,且BC=1,AD=2,AB=3.

(1)求m的值及该抛物线的函数关系式;

(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).

① 当t为何值时,△PNC是以PN为底边的等腰三角形 ;

② 设以PNCD为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源:2011年海南省海口市初三学业模拟考试数学卷 题型:解答题

(满分13分)如图12.1,已知抛物线经过坐标原点Ox轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,ADAB分别在x轴、y轴上,且BC=1,AD=2,AB=3.
(1)求m的值及该抛物线的函数关系式;
(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).
①当t为何值时,△PNC是以PN为底边的等腰三角形;
②设以PNCD为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2011年海南省海口市初三学业模拟考试数学卷 题型:解答题

(满分13分)如图12.1,已知抛物线经过坐标原点Ox轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,ADAB分别在x轴、y轴上,且BC=1,AD=2,AB=3.

(1)求m的值及该抛物线的函数关系式;

(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).

① 当t为何值时,△PNC是以PN为底边的等腰三角形 ;

② 设以PNCD为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案