精英家教网 > 初中数学 > 题目详情
如图,已知矩形,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,先直接判断△APH与△CFH是如下关系中的哪一种:然后证明你的判断.
①△APH与△CFH全等;
②△APH与△CFH相似;
③△APH与△CFH成中心对称;
④△APH与△CFH成轴对称;
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.

【答案】分析:(1)△PEF的高等于矩形的长,过P作PQ⊥BC于Q,利用三角函数即可求解;
(2)根据AD∥BC即可证明两个三角形相似;
(3)根据等角对等边即可证明FC=FH,根据PH+FH=2,BE+EF+FC=3即可求解.
解答:解:(1)过P作PQ⊥BC于Q
∵矩形ABCD∴∠B=90°,即AB⊥BC,又AD∥BC∴
∵△PEF是等边三角形∴∠PFQ=60°在Rt△PQF中,∴PF=2∴△PEF的边长为2. (4分)

(2)判断:△APH∽△CFH∵矩形ABCD∴AD∥BC∴∠2=∠1
又∵∠3=∠4,∴△APH∽△CFH (9分)

(3)猜想:PH与BE的数量关系是:PH-BE=1
证法一:在Rt△ABC中,
∴∠1=30°,∵△PEF是等边三角形,∴∠2=60°,PF=EF=2,∵∠2=∠1+∠3,∴∠3=30°
∴∠1=∠3,∴FC=FH,∵PH+FH=2,BE+EF+FC=3,∴PH-BE=1

证法二:在Rt△ABC中,,∴
∴∠1=30°∵△PEF是等边三角形,PE=2,∴∠2=∠4=∠5=60°,∴∠6=90°
在Rt△CEG中,∠1=30°,∴,即
在Rt△PGH中,∠7=30°,∴,∴,∴PH-BE=1
证法三:在Rt△ABC中,,∴
AC2=AB2+BC2,∴,∵△PEF是等边三角形,∴∠4=∠5=60°
∴∠6=∠8=90°,∴△EGC∽△PGH,∴,∴
①∵∠1=∠1,∠B=∠6=90°,∴△CEG∽△CAB,∴,即,∴
②把②代入①得,,∴PH-BE=1 (14分)
点评:本题主要考查了等边三角形的计算,以及相似三角形的判定与性质,等腰三角形的计算可以通过作高线转化为直角三角形的计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知矩形ABCD在直线l的上方,BC在直线l上,AB=a,AD=b(a、b为常数),E是BC上精英家教网的一动点(不含端点B、C),以AE为边在直线l的上方作矩形AEFG,使顶点G恰好落在射线CD上.
(1)求证:△ADG∽△ABE;
(2)过F作FH⊥l,求证:△ADG≌△EHF;
(3)连接FC,判断当点E由B向C运动时,∠FCH的大小是否总保持不变?若∠FCH的大小不变,请用含a、b的代数式表示tan∠FCH的值;若∠FCH的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知矩形数学公式,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)求证:数学公式
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知矩形ABCD在直线l的上方,BC在直线l上,AB=a,AD=b(a、b为常数),E是BC上的一动点(不含端点B、C),以AE为边在直线l的上方作矩形AEFG,使顶点G恰好落在射线CD上.
(1)求证:△ADG∽△ABE;
(2)过F作FH⊥l,求证:△ADG≌△EHF;
(3)连接FC,判断当点E由B向C运动时,∠FCH的大小是否总保持不变?若∠FCH的大小不变,请用含a、b的代数式表示tan∠FCH的值;若∠FCH的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市十五中中考数学模拟试卷(3月份)(解析版) 题型:解答题

如图,已知矩形ABCD在直线l的上方,BC在直线l上,AB=a,AD=b(a、b为常数),E是BC上的一动点(不含端点B、C),以AE为边在直线l的上方作矩形AEFG,使顶点G恰好落在射线CD上.
(1)求证:△ADG∽△ABE;
(2)过F作FH⊥l,求证:△ADG≌△EHF;
(3)连接FC,判断当点E由B向C运动时,∠FCH的大小是否总保持不变?若∠FCH的大小不变,请用含a、b的代数式表示tan∠FCH的值;若∠FCH的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源:2011年广东省广州市越秀区中考数学一模试卷(解析版) 题型:解答题

如图,已知矩形,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,先直接判断△APH与△CFH是如下关系中的哪一种:然后证明你的判断.
①△APH与△CFH全等;
②△APH与△CFH相似;
③△APH与△CFH成中心对称;
④△APH与△CFH成轴对称;
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.

查看答案和解析>>

同步练习册答案