【题目】如图,在平面直角坐标系中,抛物线过点,动点P在线段上以每秒2个单位长度的速度由点运动到点停止,设运动时间为,过点作轴的垂线,交直线于点, 交抛物线于点.连接,是线段的中点,将线段绕点逆时针旋转得线段.
(1)求抛物线的解析式;
(2)连接,当为何值时,面积有最大值,最大值是多少?
(3)当为何值时,点落在抛物线上.
【答案】(1);(2)当时,面积的最大值为16;(3)
【解析】
(1)用待定系数法即可求出抛物线的解析式;
(2)先用待定系数法求出直线AB的解析式,然后根据点P的坐标表示出Q,D的坐标,进一步表示出QD的长度,从而利用面积公式表示出的面积,最后利用二次函数的性质求最大值即可;
(3)分别过点作轴的垂线,垂足分别为,首先证明≌,得到,然后得到点N的坐标,将点N的坐标代入抛物线的解析式中,即可求出t的值,注意t的取值范围.
(1)∵抛物线过点,
∴解得
所以抛物线的解析式为: ;
(2)设直线AB的解析式为 ,
将代入解析式中得,
解得
∴直线AB解析式为 .
∵,
,
∴,
∴,
∴当时,面积的最大值为16 ;
(3)分别过点作轴的垂线,垂足分别为,
.
在和中, ,
∴≌,
∴.
∵,
.
当点落在抛物线上时,.
∴,
,
∴ .
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且点D为的中点.
(1)若∠A=70°,求∠DBE的度数;
(2)求证:AB=AC;
(3)若⊙O的半径为5cm,BC=12cm,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读资料:我们把顶点在圆上,并且一边和圆相交、另一边和圆相切的角叫做弦切角,如下左图∠ABC所示。
同学们研究发现:P为圆上任意一点,当弦AC经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图甲)
证明:∵AB切⊙O于点A, ∴∠CAB=90°, 又∵AC是直径, ∴∠P=90° ∴∠CAB=∠P
问题拓展:若AC不经过圆心O(如图乙),该结论:弦切角∠CAB=∠P还成立吗?
请说明理由。
知识运用:如图,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F。 求证:EF∥BC。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.
(1)当时,求四边形的面积;
(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF。
(1)求证:AE是⊙O的切线;
(2)若,AE=8,求⊙O的半径;
(3)在(2)条件下,求BF的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:
(1)请将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有 人达标;
(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
()请补全上面的条形图.
()所抽查学生“诵读经典”时间的中位数落在__________级.
()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com