【题目】如图,一次函数的图像与轴轴分别交于点、点,函数,与的图像交于第二象限的点,且点横坐标为.
(1)求的值;
(2)当时,直接写出的取值范围;
(3)在直线上有一动点,过点作轴的平行线交直线于点,当时,求点的坐标.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A, D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)对称中心的坐标;
(2)写出顶点B, C, B1 , C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;
(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.
(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?
(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】汽车油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数,某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图.
(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系式;
(2)从外出开始算起,如果汽车每小时行驶50千米.当油箱中余油30升时,该汽车行驶了多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如1,在矩形ABCD中,AB=6,AD=10,E为AD上一点且AE=6,连接BE.
(1)将△ABE绕点B逆时针旋转90°至△ABF(如图2),且A、B、C三点共线,再将△ABF沿射线BC方向平移,平移速度为每秒1个单位长度,平移时间为t(s)(t≥0),当点A与点C重合时运动停止.
①在平移过程中,当点F与点E重合时,t= (s).
②在平移过程中,△ABF与四边形BCDE重叠部分面积记为S,求s与t的关系式.
(2)如图3,点M为直线BE上一点,直线BC上有一个动点P,连接DM、PM、DP,且EM=5,试问:是否存在点P,使得△DMP为等腰三角形?若存在,请直接写出此时线段BP的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com