精英家教网 > 初中数学 > 题目详情

【题目】如图,函数的图象经过原点,开口向上,对称轴为直线,对于下列两个结论:①m为任意实数,则有;②方程有两个不相等的实数根,一个根小于0,另一个根大于2,说法正确的是(

A.①对,②错B.①错,②对C.①②都对D.①②都错

【答案】C

【解析】

根据二次函数的图象与性质即可求出答案.

解:∵抛物线的对称轴为直线x=1
∴当x=1时,y有最小值是a+b+c
am2+bm+c≥a+b+cm为任意实数),
am2+bm≥a+bm为任意实数),
m为任意实数),

正确;

如图,作直线y=1与抛物线交于两点,


∵函数的图象经过原点,对称轴为直线

∴函数的图象与x轴的另一个交点坐标是(2,0),

由图象可知,直线y=1与抛物线的两个交点一个在y轴的左边,另一个在直线x=2的右边,

∴方程有两个不相等的实数根,一个根小于0,另一个根大于2

∴方程有两个不相等的实数根,一个根小于0,另一个根大于2

正确;

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xoy中,二次函数的图象与x轴的交点为AB,顶点为C,点D为点C关于x轴的对称点,过点A作直线lBD于点E,连接BC的直线交直线lK.

1)问:在四边形ABKD内部是否存在点P,使它到四边形ABKD四边的距离都相等?

若存在,请求出点P的坐标;若不存在,请说明理由;

2)若MN分别为直线AD和直线l上的两个动点,连结DNNMMK,如图2,求DN+NM+MK和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在ABC中,ABAC,点DE分别在边ABAC上,且DEBC,若AD2AE,则的值是   

2)如图2,在(1)的条件下,将ADE绕点A逆时针方向旋转一定的角度,连接CEBD的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;

3)如图3,在四边形ABCD中,ACBC于点C,∠BAC=∠ADCθ,且tanθ,当CD6AD3时,请直接写出线段BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B点重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.

(1)求证:△BEF∽△CEG;

(2)求用x表示S的函数表达式,并写出x的取值范围;

(3)当E点运动到何处时,S有最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以为直径的于点,切线于点.

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,E是边的中点,点P在边上,设,若以点D为圆心,为半径的与线段只有一个公共点,则所有满足条件的x的取值范围是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线

1)若该抛物线与直线交于AB两点,点By轴上.求该抛物线的表达式及点A的坐标;

2)横坐标为整数的点称为横整点.

①将(1)中的抛物线在AB两点之间的部分记作(不含AB两点),直接写出上的横整点的坐标;

②抛物线与直线交于CD两点,将抛物线在CD两点之间的部分记作(不含CD两点),若上恰有两个横整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与x轴交于AB两点,A点在原点的左侧,B点的坐标为(30),与y轴交于C0,﹣3)点,点P是直线BC下方的抛物线上一动点.

1)求这个二次函数的表达式.

2)连接POPC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市郊外景区内一条笔直的公路a经过三个景点ABC,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km

1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km

2)求景点C与景点D之间的距离.(结果精确到1km

(参考数据: =1.73 =2.24sin53°=cos37°=0.80sin37°=cos53°=0.60tan53°=1.33tan37°=0.75sin38°=cos52°=0.62sin52°=cos38°=0.79tan38°=0.78tan52°=1.28sin75°=0.97cos75°=0.26tan75°=3.73.)

查看答案和解析>>

同步练习册答案