精英家教网 > 初中数学 > 题目详情

如图, 已知直线分别与轴, 轴交于两点, 点轴上. 以点为圆心的⊙与直线相切于点, 连接.

(1) 求证: ;

(2)如果⊙的半径为, 求出点的坐标, 并写出以为顶点, 且过点的抛物线的解析式;

    (3) 在(2)的条件下, 在此抛物线上是否存在点, 使得以三点为顶点的三角形与相似? 如果存在, 请求出所有符合条件的点的坐标; 如果不存在, 请说明理由.

 

【答案】

(1)见解析(2)(0,2) (3) (5,2)与(4,10)

【解析】(1)∵ 直线与⊙相切于点, ∴ , 而,

;                                                        

(2)容易求得点(0,12), 点(-6,0), 且, ∵ ,

, 可得, ∴ 点的坐标为(0,2);     

设以为顶点的抛物线解析式为, (0,2)代入, 得,

所以所求抛物线解析式为;                   

(3)根据草图观察,

所求点应该在轴右侧, 两条直角边应为2:1. 我们把所求直角三角形分

 ① 是较短直角边; ② 是较长直角边; ③ 是斜边 这样三类.

对于①, 容易求得(20,12), (20,2), 但两点均不在抛物线上, 不符合要求;

对于②, 容易求得(5,12), (5,2), 其中不符合要求;

对于③, 可以通过先求的高等于4后得到(4,10), (4,4), 其中不符合要求.

综上所述, 符合条件的点的坐标有(5,2)与(4,10).             

(1)依题意得出MD⊥AB继而推出∠MDA=∠AOB,∠MAD=∠BAO,然后可证明.

(2)依题意根据勾股定理求出AB的值,首先△ADM∽△AOB,利用线段比求出AM的值.已知顶点坐标代入解析式可求出a值.

(3)点P若存在,只能在y轴左侧的抛物线上,有六种可能.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•资阳)如图,已知直线l分别与x轴、y轴交于A,B两点,与双曲线y=
ax
(a≠0,x>0)分别交于D、E两点.
(1)若点D的坐标为(4,1),点E的坐标为(1,4):
①分别求出直线l与双曲线的解析式;
②若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线数学公式分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年重庆市南开中学九年级(上)期末数学试卷(解析版) 题型:解答题

如图,已知直线分别交y轴、x轴于A,B两点,以线段AB为边向上作正方形ABCD过点A,D,C的抛物线y=ax2+bx+1与直线的另一交点为点E
(1)点C的坐标为______;点D的坐标为______.并求出抛物线的解析式;
(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.


查看答案和解析>>

科目:初中数学 来源:2013年四川省资阳市中考数学试卷(解析版) 题型:解答题

如图,已知直线l分别与x轴、y轴交于A,B两点,与双曲线y=(a≠0,x>0)分别交于D、E两点.
(1)若点D的坐标为(4,1),点E的坐标为(1,4):
①分别求出直线l与双曲线的解析式;
②若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.

查看答案和解析>>

科目:初中数学 来源:2010年福建省龙岩市中考适应性考试数学试卷(一)(解析版) 题型:解答题

如图,已知直线分别交y轴、x轴于A,B两点,以线段AB为边向上作正方形ABCD过点A,D,C的抛物线y=ax2+bx+1与直线的另一交点为点E
(1)点C的坐标为______;点D的坐标为______.并求出抛物线的解析式;
(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.


查看答案和解析>>

同步练习册答案