精英家教网 > 初中数学 > 题目详情

如图,直线y=数学公式x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

解:(1)∵y=x+m交x轴负半轴于点A、交y轴正半轴于点B,
∴B(0,m)、A(-3,0).
∵AB=5,
∴m2+32=52
解得m=±4.
∵m>0,
∴m=4.
∴B(0,4).
∴OB=4.
∵直线AC⊥AB交y轴于点C,易得△BOA∽△AOC,
=
∴CO===
∵点C在y轴负半轴上,
∴C(0,-).
设直线AC解析式为y=kx+b,
∵A(-3,0),C(0,-),

解得
∴y=-x-

(2)F1)、F2(-)、F3.(-,2);

(3)分两种情况:第一种情况:当0≤t≤5时,
如图,作ED⊥FG于D,则ED=d
由题意,FG∥AC,
=
∵AF=t,AB=5,
∴BF=5-t.
∵B(0,4),
∴BC=4+=
=
∴BG=(5-t).
∵OE=0.8t,OB=4,
∴BE=4-0.8t.
∴EG=(5-t)-(4-0.8t)=-t.
∵FG⊥AB,ED⊥FG,
∴∠GDE=∠GFB=90°.
∴ED∥AB.
=
=
∴d=-t+
第二种情况:当t>5时,
如图(2),
作ED⊥FG于D,则ED=d,
则题意,FG∥AC,
=
∵AF=t,AB=5,
∴BF=t-5.
∵B(0,4),C(0,-),
∴BC=4+=
=
∴BG=(t-5).
∵OE=0.8t,OB=4,
∴BE=0.8t-4,EG=(t-5)-(0.8t-4),
=t-
∵FG⊥AB,ED⊥FG,∠GDE=∠GFB=90°,
∴ED∥AB.
=
=
∴d=t-
分析:(1)根据已知条件表示出A、B的坐标,再根据AB=5得出m的值,即可求出OB的值,再根据直线AC⊥AB交y轴于点C,得出△BOA∽△AOC,从而得出CO的值,再根据点C在y轴负半轴上,得出C点的坐标,然后设直线AC解析式为y=kx+b,把A,C点代入求出解析式;
(2)根据(1)的证明直接得出△BOF为等腰三角形时点F的坐标;
(3)先分两种情况进行讨论:当0≤t≤5时,先作ED⊥FG于D,得出ED=d,得出FG∥AC,再根据AF=t,AB=5得出BF的值,即可求出BC的值,再根据BC的值求出BG的值,再根据FG⊥AB,ED⊥FG,得出∠GDE=∠GFB=90°,求出ED∥AB,即可求出d与t的函数关系;再求当t>5时,先作ED⊥FG于D,得出ED=d,得出FG∥AC,得出B点的坐标,求出BC的值,从而得出BE,EG的值,再根据FG⊥AB,ED⊥FG,∠GDE=∠GFB=90°,得出ED∥AB即可求出d与t的函数关系;
点评:此题考查了一次函数的综合;解题的关键是求出各点的坐标,再用各点的坐标求出解析式,注意(3)中分两种情况进行讨论,不要漏掉.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案