精英家教网 > 初中数学 > 题目详情
(2013•牡丹江)如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x2-14x+48=0的两根,且OA<OB.
(1)求点A,B的坐标.
(2)过点A作直线AC交y轴于点C,∠1是直线AC与x轴相交所成的锐角,sin∠1=
3
5
,点D在线段CA的延长线上,且AD=AB,若反比例函数y=
k
x
的图象经过点D,求k的值.
(3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
分析:(1)解一元二次方程,求得OA、OB的长度,得到点A、B的坐标;
(2)如答图1所示,作辅助线,构造全等三角形△AOB≌△DEA,求得点D的坐标;进而由题意,求出k的值;
(3)如答图2所示,可能存在两种情形,需要分别计算,避免漏解.针对每一种情形,利用相似三角形和全等三角形,求出点N的坐标.
解答:解:(1)解方程x2-14x+48=0,得:x1=6,x2=8.
∵OA,OB的长分别是方程x2-14x+48=0的两根,且OA<OB,
∴OA=6,OB=8,
∴A(6,0),B(0,8).

(2)如答图1所示,过点D作DE⊥x轴于点E.

在Rt△AOB中,OA=6,OB=8,由勾股定理得:AB=10.
∴sin∠OBA=
OA
AB
=
6
10
=
3
5

∵sin∠1=
3
5

∴∠OBA=∠1.
∵∠OBA+∠OAB=90°,∠1+∠ADE=90°,
∴∠OAB=∠ADE.
在△AOB与△DEA中,
∠OBA=∠1
AB=AD
∠OAB=∠ADE

∴△AOB≌△DEA(ASA).
∴AE=OB=8,DE=OA=6.
∴OE=OA+AE=6+8=14,
∴D(14,6).
∵反比例函数y=
k
x
的图象经过点D,
∴k=14×6=84.

(3)存在.
如答图2所示,若以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形,

①当AB:AM1=2:1时,
过点M1作M1E⊥x轴于点E,易证Rt△AEM1∽Rt△BOA,
AE
OB
=
M1E
OA
=
AM1
AB
,即
AE
8
=
M1E
6
=
1
2

∴AE=4,M1E=3.
过点N1作N1F⊥y轴于点F,易证Rt△N1FB≌Rt△AEM1
∴N1F=AE=4,BF=M1E=3,
∴OF=OB+BF=8+3=11,
∴N1(4,11);
②当AB:AM2=1:2时,
同理可求得:N2(16,20).
综上所述,存在满足条件的点N,点N的坐标为(4,11)或(16,20).
点评:本题是代数几何综合题,考查了一次函数的图象与性质、解一元二次方程、反比例函数图象上点的坐标特征、相似三角形、全等三角形、矩形等知识点.第(3)问中,矩形邻边之比为1:2,有两种情形,需要分别计算,避免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•牡丹江)在Rt△ABC中,CA=CB,AB=9
2
,点D在BC边上,连接AD,若tan∠CAD=
1
3
,则BD的长为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△AOB=4,则k的值是
k=
2
5
或-
2
3
k=
2
5
或-
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.
(1)求证:CD是⊙O的切线;
(2)若半径OB=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.

请结合图象信息解答下列问题:
(1)快、慢两车的速度各是多少?
(2)出发多少小时,快、慢两车距各自出发地的路程相等?
(3)直接写出在慢车到达甲地前,快、慢两车相距的路程为150千米的次数.

查看答案和解析>>

同步练习册答案