精英家教网 > 初中数学 > 题目详情

【题目】如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF。(1)若设,满足.

(1)求BE及CF的长。

(2)求证:

(3)(1)的条件下,求△DEF的面积。

【答案】(1)BE=12,CF=5;(2)证明见解析;(3)

【解析】

试题分析:(1)先根据二次根式的非负性求出m=2,再由非负数的性质求出a、b的值,进而得到BE及CF的长;

(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到三角形BED与三角形CPD全等,利用全等三角形对应边相等得到BE=CP,再利用SAS得到EDF和PDF全等,利用全等三角形对应边相等得到EF=FP,利用等角的余角相等得到FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证;

(3)连接AD,由AB=AC,且D为BC的中点,利用三线合一得到AD垂直于BC,AD为角平分线,再由三角形ABC为等腰直角三角形,得到一对角相等,利用同角的余角相等得到一对角相等,再由AD=CD,利用ASA得到三角形AED与三角形CFD全等,利用全等三角形对应边相等得到AE=CF=5,DE=DF,由AE+EB求出AB的长,即为AC的长,再由AC-CF求出AF的长,在直角三角形AEF中,利用勾股定理求出EF的长,再根据三角形DEF为等腰直角三角形求出DE与DF的长,即可确定出三角形DEF的面积.

试题解析:(1)由题意得

解得m=2,

+|b-5|=0,

所以a-12=0,b-5=0,

a=12,b=5,

即BE=12,CF=5;

(2)延长ED到P,使DP=DE,连接FP,CP,

BED和CPD中,

∴△BED≌△CPD(SAS),

BE=CP,B=CDP,

EDF和PDF中,

∴△EDF≌△PDF(SAS),

EF=FP,

∵∠B=DCP,A=90°

∴∠B+ACB=90°

∴∠ACB+DCP=90°,即FCP=90°

在RtFCP中,根据勾股定理得:CF2+CP2=PF2

BE=CP,PF=EF,

BE2+CF2=EF2

(3)连接AD,

∵△ABC为等腰直角三角形,D为BC的中点,

∴∠BAD=FCD=45°,AD=BD=CD,ADBC,

EDFD,

∴∠EDA+ADF=90°ADF+FDC=90°

∴∠EDA=FDC,

AED和CFD中,

∴△AED≌△CFD(ASA),

AE=CF=5,DE=DF,即EDF为等腰直角三角形,

AB=AE+EB=5+12=17,

AF=AC-FC=AB-CF=17-5=12,

在RtEAF中,根据勾股定理得:EF==13,

设DE=DF=x,

根据勾股定理得:x2+x2=132

解得:x=,即DE=DF=

则SDEF=DEDF=××=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知点A的坐标为(a,0)(其中a>0),作ABy轴交反比例函数(k>0,x>0)的图象于点B.

(1)当OAB的面积为2时,k的值;a=2,过A点作ACOB(k>0,x>0)图象于点C,求C的横坐标;

(2)若D为射线AB上一点,连接OD交反比例函数图象于点E,DFx轴交反比例函数(k>0,x>0)的图象于点F,连接EF、EB,试猜想:的值是否随a的变化而变化?如果不变,求出的值;如果变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续的奇数1、3、5、7、9,……排成如下的数表:

(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?

(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;

(3)十字框中的5个数的和能等于2018吗?若能,请写出这5个数;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,动点P从点B出发沿BC方向以每秒5个单位的速度向终点C运动,过点P作PE⊥AB于点E,过点P作PF∥BA,交AC于点F,设点P运动的时间为t秒.若以PE所在的直线为对称轴,线段BD经轴对称变换后的图形为B'D',求当线段B'D'与线段AC有交点这段过程中,线段B'D'扫过的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为1的小正三角形组成的网格图,点O和△ABC的顶点都在正三角形的格点上,将△ABC绕点O逆时针旋转120°得到△A′B′C′.

(1)在网格中画出旋转后的△A′B′C′;
(2)求AB边旋转时扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h,并且甲车途中休息了0.5 h,如图是甲、乙两车行驶的路程y(km)与时间x(h)的函数图象

(1)求出图中ma的值.

(2)求出甲车行驶的路程y(km)与时间x(h)的函数关系式,并写出相应的x的取值范围.

(3)当乙车行驶多长时间时,两车恰好相距50 km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.

情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:AB是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数y=2xy=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1过点A1y轴的垂线交L2于点A2,过点A2x轴的垂线交于点A3,过点A3y轴的垂线交L2于点A4,依次进行下去,则点A2018的坐标为(  )

A. (﹣21009,21009 B. (﹣21009,﹣21010

C. (﹣1009,1009) D. (﹣1009,﹣2018)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1。在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换。若骰子的初始位置为图1所示的状态,那么按上述规则连续完成14次变换后,骰子朝上一面的点数是_____________________

查看答案和解析>>

同步练习册答案