精英家教网 > 初中数学 > 题目详情
如图,点E、F在?ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件
DF=BE
DF=BE
.(只需写出一个结论,不必考虑所有情况).
分析:使四边形AECF也是平行四边形,则要证四边形的两组对边相等,或两组对边分别平行,可添加条件DF=BE.
解答:解:需要添加的条件可以是:DF=BE.理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD,
∴∠CBE=∠ADF,
在△ADF与△BCE中,
BE=DF
∠CBE=∠ADF
BC=AD

∴△ADF≌△BCE(SAS),
∴CE=AF,同理,△ABE≌△CDF,
∴CF=AE,
∴四边形AECF是平行四边形.
点评:此题主要考查了平行四边形的判定以及矩形的判定方法,此题属于开放题熟练掌握各判定定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是
2a-b

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,若MA=AB=BN,则称A、B都为线段MN上的三等分点.则角的三等分线可以照此定义.精英家教网
(1)若线段MN=9厘米,E是线段MN上的三等分点,那么线段ME为几厘米?
(2)在∠MON中,射线OA是∠MON的三等分线,OB是∠MOA的三等分线,设∠MOB=x,画出图形,并用含x的代数式表示∠MON.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点E、F在BC上,AB=DC,∠B=∠C,∠A=∠D,
求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABD和△BEP均为等腰直角△,∠BAD=∠BEP=90゜,点O为BD的中点.
(1)如图,点P、E分别在AB、BD上,求证:AP=
2
OE;
(2)将图1中的△BPE绕B点顺时针旋转45゜,问(1)中的结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C、D在线段AB上,且C为AB的一个四等分点,D为AC中点,若BC=2,则BD的长为
5
5

查看答案和解析>>

同步练习册答案