精英家教网 > 初中数学 > 题目详情
如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.
(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)
(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;
(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.

【答案】分析:(1)由平行易得△BFE是等边三角形,那么各边是相等的;
(2)当点E是BC的中点时,△PEC为等边三角形,可得到PC=EC=BE=EF,也就得到了四边形EFPC是平行四边形,再有EF=EC可证为菱形;
(3)根据各点到圆心的距离作答即可.
解答:解:(1)如图,∵△ABC是等边三角形,
∴∠B=∠A=∠C=60°.
又∵EF∥AC,
∴∠BFE=∠A=60°,∠BEF=∠C=60°,
∴△BFE是等边三角形,PE=EB,
∴EF=BE=PE=BF;

(2)当点E是BC的中点时,四边形是菱形;
∵E是BC的中点,
∴EC=BE,
∵PE=BE,
∴PE=EC,
∵∠C=60°,
∴△PEC是等边三角形,
∴PC=EC=PE,
∵EF=BE,
∴EF=PC,
又∵EF∥CP,
∴四边形EFPC是平行四边形,
∵EC=PC=EF,
∴平行四边形EFPC是菱形;

(3)如图所示:
当点E是BC的中点时,EC=1,则NE=ECcos30°=
当0<r<时,有两个交点;
当r=时,有四个交点;
<r<1时,有六个交点;
当r=1时,有三个交点;
当r>1时,有0个交点.
点评:本题综合考查了等边三角形的性质和判定,菱形的判定及点和圆的位置关系等知识点.注意圆和线段有交点,应根据半径作答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为l,取边AC的中点D,在外部画出一个新的等边三角形△CDE,如此绕点C顺时针继续下去,直到所画等边三角形的一边与△ABC的BC边重叠为止,此时这个三角形的边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,等边△ABC的三条角平分线相交于点O,OD∥AB交BC于D,OE∥AC交BC于点E,那么这个图形中的等腰三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边△ABC的边长为6,点D、E分别在AB、AC上,且AD=AE=2,直线l过点A,且l∥BC,若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设F点运动的时间为t秒,当t>0时,直线DF交l于点G,GE的延长线与BC的延长线交于点H,AB与GH相交于点O.
(1)当t为何值时,AG=AE?
(2)请证明△GFH的面积为定值;
(3)当t为何值时,点F和点C是线段BH的三等分点?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为2,AD是△ABC的角平分线,
(1)求AD的长;
(2)取AB的中点E,连接DE,写出图中所有与BD相等的线段.(不要求说理)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为(  )

查看答案和解析>>

同步练习册答案