【题目】在数轴上点A表示数,点B表示数,AB表示点A和点B之间的距离.,满足.
(1)在原点O处放了一挡板,若一小球P从点A处以3个单位/秒的速度向左运动,同时另一个小球Q从点B处以4个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反方向运动,设运动时间t(秒),问t为何值时,P、Q两球到原点的距离相等?
(2)若小球P从点A以每秒4个单位的速度向右运动,小球Q同时从点B以每秒3个单位得速度向左运动,则是否存在时间t,使得AP+BQ=2PQ?若存在,请求出时间t;若不存在,请说明理由.
【答案】(1)1,15;(2)否,理由见解析
【解析】
(1)先根据绝对值和完全平方的非负性得出,的值,再根据题意列出方程即可求解;
(2)先根据题意列出AP、BQ、PQ的代数式,再列出方程求解即可.
(1)由题意得:,
解得:,
∴,
∴,
根据题意得:
∴当时,,解得:
当时,,解得:;
(2)①当P在OA之间且未碰到挡板时,,
AP=4t,QB=3t,PQ=15-4t-3t=15-7t
∴4t+3t=2(15-7t)
解得:(舍去);
②当P碰到挡板反弹后在OA之间时,,
AP=8-4t,QB=3t,PQ=11-3t+4t-4=t+7
∴8-4t+3t=2(t+7)
解得:t=-2(舍去)
③当P碰到挡板反弹后过了A点,且Q还未碰到挡板时,
AP=4t-8,QB=3t,PQ=11-3t+4t-4=t+7
∴4t-8+3t=2(t+7)
解得:(舍去);
④当Q碰到挡板反弹后在OB之间时,
AP=4t-8,QB=22-3t,PQ=3t-11+4t-4=7t-15
∴4t-8+22-3t=2(7t-15)
解得:(舍去);
⑤当Q碰到挡板反弹后过了B点时,
AP=4t-8,QB=3t-22,PQ=3t-11+4t-4=7t-15
∴4t-8+3t-22=2(7t-15)该方程无解
综上所述:不存在时间t,使得AP+BQ=2PQ.
科目:初中数学 来源: 题型:
【题目】定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).
(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)= .
(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n); d()=d(m)﹣d(n).若d(3)=0.48,d(2)=0.3,根据运算性质,填空:d(6)= ,则d()= ,d()= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平房区政府为了“安全,清激、美丽”河道,计划对何家沟平房区河段进行改造,现有甲乙两个工程队参加改造施工,受条件阻制,每天只能由一个工程队。若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米放入施工任务;若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务。
(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?确工多20米的改透施工任多
(2)何家沟平房区河段全长6000米。若工期不能超过90天,乙工程队至少施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个自然数可以表示为三个连续奇数的和,那么我们就称这个数为“锦鲤数”,如:9=1+3+5,所以9是“锦鲤数”.
(1)请问21和35是不是“锦鲤数”,并说明理由;
(2)规定:(其中,且为自然数),是否存在一个“锦鲤数”,使得50=-3666.若存在,则求出,并把表示成3个连续的奇数和的形式,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A,B,C(如图),按要求完成下列问题:
(1)画出直线BC、射线CA、线段AB.
(2)过C点画CD⊥AB,垂足为点D.
(3)在以上的图中,互余的角为 ,互补的角为 .(各写出一对即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在研究反比例函数y=﹣的图象时,我们发现有如下性质:
(1)y=﹣的图象是中心对称图形,对称中心是原点.
(2)y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.
(3)在x<0与x>0两个范围内,y随x增大而增大;
类似地,我们研究形如:y=﹣+3的函数:
(1)函数y=﹣+3图象是由反比例函数y=﹣图象向____平移______个单位,再向_______平移______个单位得到的.
(2)y=﹣+3的图象是中心对称图形,对称中心是______.
(3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由.
(4)对于函数y=,x在哪些范围内,y随x的增大而增大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com