【题目】如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.
(1)求证:△ADF≌△DCE;
(2)求GH的长.
【答案】(1)详见解析;(2)
【解析】
(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;
(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.
(1)证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADC=∠C=90°,
∵DF = CE,
∴△ADF≌△DCE(SAS);
(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,
∵∠DAF+∠DFA=90°,∴∠CDE +∠DFA=90°,
∴∠DGF=90°,∴∠AGE=90°,
∵AB=BC=6,EC=2,∴BE=4,
∵∠B=90°,∴AE==,
∵点H为AE的中点,∴GH=.
科目:初中数学 来源: 题型:
【题目】已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.
(1)求证:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知中,,,,、是的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为.
(1)则____________;
(2)当为何值时,点在边的垂直平分线上?此时_________?
(3)当点在边上运动时,直接写出使成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E、B、D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是( )
A.50B.44C.38D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在棋盘中建立如图①所示的平面直角坐标系,二颗棋子、、的位置如图,它们的坐标分别为、、.
(1)如图②,添加棋子,使、、、为端点的四条首尾连接的线段围成的图形成为轴对称图形,请在图中画出该图形的对称轴;
(2)在其它格点位置添加一颗棋子,使、、、为端点的首尾连接的四条线段构成一个轴对称图形,请直接写出点的坐标。(写山2个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD。
(1)如图1,直接写出∠ABD的大小(用含的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数
求出抛物线的对称轴和顶点坐标;
在直角坐标系中,直接画出抛物线(注意:关键点要准确,不必写出画图象的过程);
根据图象回答:
①取什么值时,抛物线在轴的上方?
②取什么值时,的值随的值的增大而减小?
根据图象直接写出不等式的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com