精英家教网 > 初中数学 > 题目详情
如图,在△ABD和△ACE中,AB=AD ,AC=AE,∠BAD=∠CAE,连接BC,DE相交于点F,BC与AD相交于点G。
(1)试判断线段BC,DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?并说明理由。
解:(1)BC=DE,利用△ABC≌△ADE即可得出结论,过程“略”;
(2)FD是FG与FB的比例中项;
证明:∵△ABC≌△ADE
∴∠ABC=∠ADE
∵∠ABC=∠CBD
∴∠CBD=∠ADE
又∵∠BFD=∠DFG
∴△DFG∽△BFD 
 ∴
∴FD2=FG·BF。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知:
在△ABD和△ACE中,AB=AC,AD=AE,BD=CE

求证:
∠1=∠2

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△BAC中,∠1=∠2,∠C=∠D,AC、BD相交于点E,则下列结论中正确的个数有(  )
①∠DAE=∠CBE;②△ADE≌△BCE;③CE=DE;④△EAB为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.
(1)试说明:△ABC≌△ADE.
(2)如果线段FD是线段FG和FB的比例中项,那么BC平分∠ABD吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,有下列四个等式:
①AB=AC  ②AD=AE  ③∠1=∠2  ④BD=CE.
请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以说理.
题设:
AB=AC,AD=AE,BD=CE
AB=AC,AD=AE,BD=CE
,结论:
∠1=∠2
∠1=∠2
.(不能只填序号)理由如下:

查看答案和解析>>

同步练习册答案