精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,点O是AC边上的一个动点(点O不与A、C两点重合),过点O作直线MN∥BC,直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.
(1)OE与OF相等吗?为什么?
(2)探究:当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
(3)在(2)中,当∠ACB等于多少时,四边形AECF为正方形.(不要求说理由)
分析:(1)角平分线到角两边的距离相等,再利用全等三角形即可求解.
(2)探究性问题,归根究底还是对矩形性质的判定,再平行四边形的基础上,加上其对角线平分且相等即可.
(3)正方形的判定,在(2)的基础上,即在矩形的基础上补充对角线垂直即可.
解答:精英家教网解:(1)如图所示:作EG⊥BC,EJ⊥AC,FK⊥AC,FH⊥BC,
因为直线EC,CF分别平分∠ACB与∠ACD,所以EG=EJ,FK=FH,
在△EJO与△FKO中,
∠AOE=∠CON
∠EJO=∠FKO
EJ=FK

所以△EJO≌△FKO,即OE=OF(3分)

(2)当OA=OC,OE=OF时,四边形AECF是矩形,
证明:∵OA=OC,OE=OF,
∴四边形AECF为平行四边形,
又∵直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.
∴∠ACE=∠BCE,∠ACF=∠FCD,
由∠BCE+∠ACE+∠ACF+∠FCD=180°,
∴∠ECA+∠ACF=90°,即∠ECF=90°,
∴四边形AECF为矩形;(3分)

(3)由(2)可知,四边形AECF是矩形,要使其为正方形,再加上对角线垂直即可,即∠ACB=90°(10分)
点评:掌握角平分线到角两边距离相等,以及正方形,矩形的性质及判定定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案