精英家教网 > 初中数学 > 题目详情
如图,AB=AC=10cm,BC=12cm,BF∥AC,点P、Q均以1cm/s的速度同时分别从C、A出发沿CA,AB的方向运动(当P到达A点时,点P、Q均停止运动),过点P作PE∥BC,分别交AB、BF于点G、E,设运动时间为ts.
(1)直接判断并填写:
经过t秒,线段AP=______cm(用含t的代数式表示),线段QE______QP(用“>、<、=、≥、≤”符号表示);
(2)四边形EBPA的面积会变化吗?请说明理由:
(3)①当0<t<5时,求出四边形EBPA的面积S与t的函数关系式;
②试探究:当t为何值时,四边形EBPQ是梯形.

【答案】分析:(1)因为AC=10cm,点P以以1cm/s的速度从A出发,从而可得出代数式,线段QE和QP相等.
(2)四边形EBPA的面积不会变化,可求出四边形的面积.
(3)根据三角形全等和勾股定理,以及三角形的面积表示出四边形的面积求出解以及根据梯形的概念判断出梯形.
解答:解:(1)PA的长度为:10-t,
QE=PQ.

(2)四边形EBPA的面积不会变化.
∵BF∥AC,
∴BF与AC的距离处处相等.
设EF与AC的距离为h,
又∵PE∥BC,
∴四边形EBCP是平行四边形.
∴EB=PC=t,AP=10-t,
∴S四边形EBPA=(EB+AP)h=(t+10-t)•h=5h;

(3)①AQ=t,则BQ=10-t,
又∵AP=10-t,EB=t,
∴EB=AQ,BQ=AP,
又∵BF∥AC,
∴∠EBA=∠QAP,
∴△EBQ≌△QAP,
在△ABC中,AB=AC=10cm,BC=12cm,作AH⊥BC于H,
则CH=BC=×12=6,
AH===8,
作BM⊥AC于点M,
∵S△ABC=•BC•AH=•AC•BM,
∴12×8=10•BM
BM=
∴S△ABP=(10-t)×
即S=48-t.

∵BF∥AC,∴BE不平行于PQ,
∴当EQ∥BP时,四边形EBPQ是梯形.
∴∠GEQ=∠GPB,∠EQB=∠GBP,
∴△EGQ∽△PGB,

又∵AB=AC,
∴∠ABC=∠C.
又∵PG∥BC,且PG≠BC,
∴四边形GBCP是等腰梯形,
∴GB=PC=t,
∴GQ=10-2t,
同理可证△AGP∽△EGB,
=
=
化简得:t2-30t+100=0,
解得:t1=15+5(舍去),t2=15-5
当t=15-5是,四边形EBPQ是梯形.
点评:本题考查平行四边形的判定和性质,全等三角形的判定和性质,梯形的概念等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;
(2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)已知:如图,AB=AC,∠DAE=∠B.
求证:△ABE∽△DCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•来宾)如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是
(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于点D,求:
(1)∠ABD的度数;
(2)若△BCD的周长是m,求BC的长.

查看答案和解析>>

同步练习册答案