精英家教网 > 初中数学 > 题目详情
在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.
(1)试判断三角形PBC的形状;
(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.

【答案】分析:根据已知条件,得到四边形ABCD为直角梯形或矩形.
(1)过点P作PQ⊥BC,易证PQ=BQ=QC,则△PQB与△PQC是全等的等腰直角三角形,因而△PBC是等腰直角三角形.
(2)判断在线段BC上,是否存在点M,使AM⊥MD,利用相似三角形的性质与判定得出即可.
解答:解:(1)在四边形ABCD中,AB⊥BC,DC⊥BC,
∴AB∥DC.
又∵AB=a,DC=b,且a≤b,
∴四边形ABCD为直角梯形(或矩形).
过点P作PQ⊥BC,垂足为Q,
∴PQ∥AB,
又∵点P是AD的中点,
∴点Q是BC的中点,
又∵PQ=(AB+CD)=(a+b)=BC,
∴PQ=BQ=QC.
∴△PQB与△PQC是全等的等腰直角三角形.
∴∠BPC=∠BPQ+∠QPC=90°,PB=PC,
即△PBC是等腰直角三角形.

(2)存在点M,使AM⊥MD.
理由是∵AB⊥BC,CD⊥BC,
∴∠B=∠C=90°,
=时,△ABM∽△MCD,
∴∠BAM=∠DMC,
∵∠BAM+∠AMB=90°,
∴∠AMB+∠DMC=180°-90°=90°,
∴∠AMD=90°,
此时AM⊥DM,
代入得:=
整理得出:BM2-(a+b)BM+ab=0,
(BM-a)(BM-b)=0,
∴BM=b或BM=a,
综合上述:在线段BC上,存在点M,使AM⊥MD,BM的长是a或b.
点评:根据BC=a+b,联想到梯形的中位线定理,得到过点P作PQ⊥BC这条辅助线是解决本题的关键.
并且本题把判断M点是否存在的问题转化成了探讨圆与直线的交点的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,BD是它的一条对角线,若∠1=∠2,∠A=55°16′,则∠ADC=
124°44′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,AD=4cm,CD=3cm,AD⊥CD,AB=13cm,BC=12cm,求四边形的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

6、在四边形ABCD中,AD∥BC,AB=DC,则四边形ABCD是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在四边形ABCD中,∠A,∠B,∠C,∠D的度数之比为2:3:4:3,则∠C的外角等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是边DC的中点,N是边AB的中点.△MPN是什么三角形?为什么?

查看答案和解析>>

同步练习册答案