精英家教网 > 初中数学 > 题目详情
10.已知:如图,在?ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.
求证:OE=OF.

分析 由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.

解答 证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵BE=DF,
∴AB+BE=CD+DF,即AE=CF,
∵AB∥CD,
∴AE∥CF,
∴∠E=∠F,∠OAE=∠OCF,
在△AOE和△COF中,$\left\{\begin{array}{l}{∠E=∠F}\\{AE=CF}\\{∠OAE=∠OCF}\end{array}\right.$,
∴△AOE≌△COF(ASA),
∴OE=OF.

点评 本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,反比例函数y=$\frac{m}{x}$的图象与一次函数y=kx+b的图象交于A、B两点.点A的坐标为(n,6),点B的坐标为(12,1).
(1)求反比例函数与一次函数的表达式;
(2)点C为y轴上的一个动点,若S△ACB=15,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为(  )
A.-5℃B.5℃C.10℃D.15℃

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.

请根据图中信息,解答下列问题:
(1)参加初赛的选手共有40名,请补全频数分布直方图;
(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?
(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )
A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知二次函数y=(x+m)2-n的图象如图所示,则一次函数y=mx+n与反比例函数y=$\frac{mn}{x}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为(  )
A.65°B.60°C.55°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列图形既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某机械厂每月固定生产甲、乙两种零件共80万件,并能全部售出.甲零件每件成本10元,售价16元;乙零件每件成本8元,售价12元.设生产甲零件x万件.所获总利润y万元.
(1)写出y与x的函数关系式;
(2)如果每月投入的总成本不超过740万元,应该怎样安排甲、乙零件的产量,可使所获的总利润最大?最大总利润是多少万元?
(3)该厂在销售中发现:某月甲零件售价每提高1元,甲零件销量会减少5万件,乙零件售价不变,不管生产多少都能卖出,在(2)获得最大利润的情况下,为了获得更大的利润,该厂决定提高甲零件的售价,并重新调整甲、乙零件的生产数量,求甲零件售价提高多少元时,可获总利润最大?最大总利润是多少万元?

查看答案和解析>>

同步练习册答案