精英家教网 > 初中数学 > 题目详情
精英家教网如图Rt△ABO中,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到OA′B′的位置.
(1)求点B′的坐标.
(2)求顶点A从开始到A′点结束经过的路径长.
分析:(1)过点B′作B′D⊥x轴于D,由旋转的性质可知OB′的长,从而求出OD,DB′的长.就可写出坐标.
(2)顶点A从开始到A′点结束经过的路径长就是一段弧长,由已知题中给出的条件圆心角是120度,半径是OA的长度,然后利用弧长公式计算.
解答:精英家教网解:(1)过点B′作B′D⊥x轴于D,
由旋转的性质知,∠A′=30°,∠A′OB′=60°,OB′=2,OA′=4,
∴OD=OB′cos60°=2•
1
2
=1,
DB′=OB′sin60°=2
3
2
=
3

∴B′的坐标为:B′(1,
3
)


(2)∵∠AOB=60°,
∴∠AOA′=180°-60°=120°.
∵Rt△ABO中,∠A=30°,OB=2,
∴OA=2OB=4,
∴A由开始到结束所经过的路径长为:
120•π•4
180
=
3
点评:本题综合考查了旋转的性质及直角坐标系的知识及弧长的计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图Rt△ABO中,∠ABO=Rt∠,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到△OA1B1的位置.
(1)求点A、B1的坐标;
(2)求经过A、O、B1三点的抛物线解析式;
(3)抛物线对称轴l上是否存在点P,使PO+PB1的值最小?若存在,求出点P的坐标;若不存在,说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图Rt△ABO中,∠ABO=Rt∠,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到△OA1B1的位置.
(1)求点A、B1的坐标;
(2)求经过A、O、B1三点的抛物线解析式;
(3)抛物线对称轴l上是否存在点P,使PO+PB1的值最小?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省宁波市江北区中考数学模拟试卷(解析版) 题型:解答题

(2009•江北区模拟)如图Rt△ABO中,∠ABO=Rt∠,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到△OA1B1的位置.
(1)求点A、B1的坐标;
(2)求经过A、O、B1三点的抛物线解析式;
(3)抛物线对称轴l上是否存在点P,使PO+PB1的值最小?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:内蒙古自治区中考真题 题型:解答题

如图Rt△ABO中,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到OA′B′的位置。
(1)求点B′的坐标。
(2)求顶点A从开始到A′点结束经过的路径长。

查看答案和解析>>

同步练习册答案