【题目】已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原。
(I)若点P落在矩形OBCD的边OB上,
①如图①,当点E与点O重合时,求点F的坐标;
②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若,求点F的坐标:
(Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。
【答案】(I)①点F的坐标为;②点F的坐标为
;(II)
【解析】
(I)①根据折叠的性质可得,再由矩形的性质,即可求出F的坐标;
②由折叠的性质及矩形的特点,易得,得到
,再加上平行,可以得到四边形DEPF是平行四边形,在由对角线垂直,得出
是菱形,设菱形的边长为x,在
中,由勾股定理建立方程即可求解;
(Ⅱ)当O,P,F点共线时OP的长度最短.
解:(I)①∵折痕为EF,点P为点D的对应点
∵四边形OBCD是矩形,
点F的坐标为
②∵折痕为EF,点P为点D的对应点.
∵四边形OBCD是矩形,
,
;
∴四边形DEPF是平行四边形.
,
是菱形.
设菱形的边长为x,则
,
,
在中,由勾股定理得
解得
∴点F的坐标为
(Ⅱ)
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的
上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮想趁暑假去看世博会,可是只有一张门票,谁都想去,最后商定通过转盘游戏来决定.他们准备了如图所示两个可以自由转动的转盘
、
,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为
时,小明去:数字之和为
时,小亮去.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)
用树状图或列表法求小明去的概率;
这个游戏规则对小明、小亮双方公平吗?请判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.
(1)当∠BAM= °时,AB=2BM;
(2)请添加一个条件: ,使得△ABC为等边三角形;
①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;
②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】车间有20名工人,某一天他们生产的零件个数统计如下表:
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com