精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB = 30°,点P是∠AOB内任意一点,且OP = 7,点E和点F分别是射线OA和射线OB上的动点,则△PEF周长的最小值是______.

【答案】7

【解析】

设点P关于OA的对称点为C,关于OB的对称点为D,当点EFCD上时,△PEF的周长最小.

分别作点P关于OAOB的对称点CD,连接CD,分别交OAOB于点EF,连接OPOCODPEPF

∵点P关于OA的对称点为C,关于OB的对称点为D

PECEOPOC,∠COA=∠POA

∵点P关于OB的对称点为D

PFDFOPOD,∠DOB=∠POB

OCODOP7,∠COD=∠COA+∠POA+∠POB+∠DOB2POA2POB2AOB60°,

∴△COD是等边三角形,

CDOCOD7

∴△PEF的周长的最小值=PEEFPFCEEFDFCD7

故答案为7.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(问题探究)小敏在学习了RtABC的性质定理后,继续进行研究.

1)(i)她发现图①中,如果∠A30°BCAB存在特殊的数量关系是   

ii)她将△ABC沿AC所在的直线翻折得△AHC,如图②,此时她证明了BCAB的关系;请根据小敏证明的思路,补全探究的证明过程;

猜想:如果∠A30°BCAB存在特殊的数量关系是   

证明:△ABC沿AC所在的直线翻折得△AHC

2)如图③,点EF分别在四边形ABCD的边BCCD上,且∠B=∠D90°,连接AEAFEF,将△ABE、△ADF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形,连接AC,若∠EAF30°AB227,则△CEF的周长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BD,CE分别是AC,AB边上的高,BD, CE交于O,则图中共有相似三角形(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠BAC30°EAB边的中点,以BE为边作等边BDE,连接ADCD

1)求证:ADE≌△CDB

2)若BC1,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与思考:利用多项式的乘法法则,可以得到,反过来,则有利用这个式子可以将某些二次项系数是1的二次三项式分解因式。例如:将式子分解因式.这个式子的常数项,一次项系数,所以

解:

上述分解因式的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).

请仿照上面的方法,解答下列问题:

1)分解因式:

2)分解因式:

3)若可分解为两个一次因式的积,写出整数P的所有可能值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某村要设计修建一条引水渠,渠道的横断面为等腰梯形,渠道底面宽0.8m,渠道内坡度是1:0.5.引水时,水面要低于渠道上沿0.2m,水流的横断面(梯形ABFE)的面积为1.3m2,求水渠的深度h.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向内旋转35°到达ON位置,此时点A,C的对应位置分别是点B,D,测量出∠ODB=25°,点D到点O的距离为30cm,求滑动支架BD的长.

(结果精确到1cm,参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,,垂足为点,垂足为点边的中点,连结.设,则的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.

(1)请说出这个几何体模型的最确切的名称是__ __

(2)如图是根据 ah的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和三角形),请在网格中画出该几何体的左视图;

(3)(2)的条件下,已知h20 cm,求该几何体的表面积.

查看答案和解析>>

同步练习册答案