精英家教网 > 初中数学 > 题目详情
15.如图,正方形ABCD的面积是(  )
A.5B.25C.7D.10

分析 在直角△ADE中利用勾股定理求出AD2,即为正方形ABCD的面积.

解答 解:∵在△ADE中,∠E=90°,AE=3,DE=4,
∴AD2=AE2+DE2=32+42=25,
∴正方形ABCD的面积=AD2=25.
故选B.

点评 本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了正方形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知A=2x2+xy+3y-1,B=x2-xy.
(1)若(x+2)2+|y-3|=0,求A-2B的值;
(2)若A-2B的值与y的值无关,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.[实际情境]
甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米.小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.
[数学研究]
如图,折线A-B-C、A-D-E分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图象.
(1)写出D点坐标的实际意义;
(2)求线段AB对应的函数表达式;
(3)求点E的坐标;
(4)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知代数式x-2y的值是-5,则代数式3-x+2y的值是8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC中,AB=AC=8,BC=12,点P、Q分别在AB、BC边上,且∠AQP=∠B.
(1)求证:△BQP∽△CAQ;
(2)若BP=4.5,求∠BPQ的度数;
(3)若在BC边上存在两个点Q,满足∠AQP=∠B,求BP长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.【问题提出】已知∠AOB=70°,∠AOD=$\frac{1}{2}$∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度数.
【问题思考】聪明的小明用分类讨论的方法解决.
(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC的度数,解答过程如下:设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD-∠BOC=2α,∴∠AOD=$\frac{1}{2}$∠AOC,
∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°
问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC的度数;
【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.
【问题解决】综上所述:∠BOC的度数分别是14°,30°,10°或42°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,抛物线y=ax2+bx-2(a≠0)过点A(-1,0),B(4,0),与y轴交与点C,顶点为D.
(1)求抛物线的解析式与顶点D的坐标;
(2)点E从A点出发,沿x轴向B点运动并到点B停止(点E与点A,B不重合)过点E作直线l平行BD,交直线AD于点F,设AE的长为m,连接DE,求△DEF面积的最大值及此时点E到BD的距离;
(3)试探究:
①在抛物线的对称轴上是否存在点M,使得MA+MC的值最小?若存在请求出M的坐标,若不存在,请说明理由;
②在抛物线的对称轴上是否存在点N,使丨NA-NC丨的值最大?若存在请求出N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图①,已知点A(4,4),P为x轴正半轴上一点,AQ⊥AP交y轴于Q.
(1)判断AP与AQ的大小.
(2)当点P在x轴正半轴上运动,点Q在y轴正半轴上时,①OP+OQ与②|OP-OQ|中哪个为定值,并求其值.
(3)当点P在x轴正半轴上运动,点Q在y轴负半轴上时,如图②,(2)中的哪个为定值,并求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读材料,大数学家高斯在上学时研究过这样一个问题,1+2+3+…+10=?经过研究这个问题,这个问题的一般性结论是1+2+3+…+n=$\frac{1}{2}$n(n+1)其中n是正整数,现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?
观察下面三个特殊的等式:
1×2=$\frac{1}{3}$(1×2×3-0×1×2),
2×3=$\frac{1}{3}$(2×3×4-1×2×3),
3×4=$\frac{1}{3}$(3×4×5-2×3×4),
将这三个等式的两边相加,可以得到1×2+2×3+3×4=$\frac{1}{3}$×3×4×5=20
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+n(n+1)=$\frac{1}{3}$n(n+1)(n+2);
(3)1×2×3+2×3×4+3×4×5+…+7×8×9=1260.

查看答案和解析>>

同步练习册答案