精英家教网 > 初中数学 > 题目详情
如图所示,正方形的面积为12,是等边三角形,点在正方形
内,在对角线上有一点,使的和最小,则这个最小值为       .
连接BD,交AC于O,根据正方形的性质推出D和B关于AC对称,则P在BE和AC的交点上时,PD+PE最小,根据正方形的面积求出BE即可.
解:连接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B关于AC对称,
则BE交于AC的点是P点,此时PD+PE最小,
∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
∴此时PD+PE最小,
此时PD+PE=BE,
∵正方形的面积是12,等边三角形ABE,
∴BE=AB==2
即最小值是2
本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置,题型较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

顺次连接对角线相等的四边形四边中点所得的四边形是        (     )
A.梯形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分6分)如图, F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,
连结AE、BD,求证:四边形ABDE是平行四边形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分4分)
(1)如图①两个正方形的边长均为3,求三角形DBF的面积.
(2)如图②,正方形ABCD的边长为3,正方形CEFG的边长为1, 求三角形DBF的面积.
(3)如图③,正方形ABCD的边长为a,正方形CEFG的边长为,求三角形DBF的面积.

从上面计算中你能得到什么结论.
结论是:
(没写结论也不扣分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图7,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,
(1)求证:四边形EBFC是菱形;
(2)如果=,求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题12分)如图8,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F.
(1)求证:△ABE≌△ADF;
(2)若∠BAE=∠EAF,求证:AE=BE;
(3)若对角线BD与AE、AF交于点M、N,且BM=MN(如图9).
求证:∠EAF=2∠BAE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG
=45°,点F在边AD的延长线上,且DF= BE.则下列结论:①∠ECB是锐角,;
②AE<AG;③△CGE≌△CGF;④EG= BE+GD中一定成立的结论有    ▲    
(写出全部正确结论).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011四川泸州,15,3分)矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则矩形的面积为       cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分11分)如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E。
(1)求证:△AED≌△CGF;
(2)若梯形ABCD为直角梯形,∠B=90°,判断四边形DEFG是什么特殊四边形?并证明你的结论;
(3)若梯形ABCD的面积为a(平方单位),则四边形DEFG的面积为      (平方单位)。(只写结果,不必说理)

查看答案和解析>>

同步练习册答案