【题目】已知∠ACD=90°,AC=DC,MN是过点A的直线,DB⊥MN于点B.
(1)如图,求证:BD+AB=BC;
(2)直线MN绕点A旋转,在旋转过程中,当∠BCD=30°,BD=时,求BC的值.
【答案】(1)证明见解析;(2)BC=+1或﹣1.
【解析】
(1)过点C作CE⊥CB于点C,与MN交于点E,易证:∠BCD=∠ACE,∠CBD=∠CEA,进而证明△ACE≌△DCB(AAS),可得:△ECB为等腰直角三角形,即:BE=CB,进而得到结论;
(2)分两种情况讨论:①当C,D在直线MN的同侧时,②当C,D在直线MN的异侧时,分别求出BC的值,即可.
(1)过点C作CE⊥CB于点C,与MN交于点E,如图1,
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,
∴∠BCD=∠ACE,
∵DB⊥MN,
∴∠ABC+∠CBD=90°,
∵CE⊥CB
∴∠ABC+∠CEA=90°,
∴∠CBD=∠CEA.
又∵AC=DC,
∴△ACE≌△DCB(AAS),
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE=CB.
又∵BE=AE+AB,
∴BE=BD+AB,
∴BD+AB=CB.
(2)①当C,D在直线MN的同侧时,连接AD,过点D作DF⊥BC于点F,如图2,
∵AC=CD,∠ACD=90°,
∴∠CAD=∠ADC=45°,
∵∠ACD=∠ABD=90°,
∴点A,点C,点D,点B四点共圆,
∴∠CAD=∠CBD=45°,且DF⊥BC,
∴∠FBD=∠FDB=45°,且BD=,
∴BF=DF=1,
∵∠BCD=30°,DF⊥BC,
∴CF=DF=,
∴BC=CF+BF=+1,
②当C,D在直线MN的异侧时,连接AD,过点D作DF⊥BC于点F,如图3,
∵AC=CD,∠ACD=90°,
∴∠CAD=∠ADC=45°,
∵∠ACD=∠ABD=90°,
∴点A,点C,点D,点B四点共圆,
∴∠CAD=∠DBF=45°,且DF⊥BC,
∴∠FBD=∠FDB=45°,且BD=,
∴BF=DF=1,
∵∠BCD=30°,DF⊥BC,
∴CF=DF=,
∴BC=CF﹣BF=﹣1.
图1 图2 图3
科目:初中数学 来源: 题型:
【题目】如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.
(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.
(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD顶点A在函数y=(x>0)的图像上,函数y=(k>4,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=4,∠ADC=150°,则k=______。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;
(2)当点在上时.
①求证:;
②如图2,在上取一点,使,连结.求证:;
(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,=,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄山景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件.物价部门规定:销售单价不低于元,但不能超过元,设该纪念品的销售单价为(元),日销量为(件).
(1)直接写出与的函数关系式.
(2)求日销售利润(元)与销售单价(元)的函数关系式.并求当为何值时,日销售利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的图象经过点、和原点,为直线上方抛物线上的一个动点.
(1)求直线及抛物线的解析式;
(2)过点作轴的垂线,垂足为,并与直线交于点,当为等腰三角形时,求的坐标;
(3)设关于对称轴的点为,抛物线的顶点为,探索是否存在一点,使得的面积为,如果存在,求出的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.
(1)求剩余木料的面积.
(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出 块这样的木条.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com