【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.
(1)求证:△DOB∽△ACB;
(2)若AD平分∠CAB,求线段BD的长;
(3)当△AB′D为等腰三角形时,求线段BD的长.
【答案】(1)证明见试题解析;(2)5;(3).
【解析】
试题(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD=x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x,
AB′,B′O,BO用x表示,利用等腰三角形求BD长.
试题解析:
(1)证明:∵DO⊥AB,∴∠DOB=90°,
∴∠ACB=∠DOB=90°,
又∵∠B=∠B.∴△DOB∽△ACB.
(2)∵AD 平分∠CAB,DC⊥AC,DO⊥AB,
∴DO=DC,
在 Rt△ABC 中,AC=6,BC=,8,∴AB=10,
∵△DOB∽△ACB,
∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶5,
设BD=x,则DO=DC=x,BO=x,
∵CD+BD=8,∴x+x=8,解得x=,5,即:BD=5.
(3)∵点B 与点B′关于直线DO 对称,∴∠B=∠OB′D,
BO=B′O=x,BD=B′D=x,
∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,
∴当△AB′D 是等腰三角形时,AB′=DB′,
∵AB′+B′O+BO=10,
∴x+x+x=10,解得x=,即BD=,
∴当△AB′D 为等腰三角形时,BD=.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的顶点A是双曲线与直线在第二象限的交点,AB⊥轴于B且S△ABO =.
(1)求这两个函数的解析式.
(2)求直线与双曲线的两个交点A,C和直线AC与x轴的交点D的坐标和△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)若P、Q分别从A、B同时出发,那么几秒后△PBQ的面积等于4cm2?
(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?
(3)在(1)中,△PBQ的面积能否等于7cm2? 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,和都是等边三角形,且点A、C、E在同一直线上,与、分别交于点F、M,与交于点N.下列结论正确的是_______(写出所有正确结论的序号).
①;②;③;④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y2=(k≠0)的图象上.
(1)求点P的坐标;
(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:
V(千米/小时) | 20 | 30 | 40 | 50 | 60 |
T(小时) | 0.6 | 0.4 | 0.3 | 0.25 | 0.2 |
(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;
(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点,与y轴交于C点.
(1)点P是线段BC下方的抛物线上一点,过点P作PD⊥BC交BC于点D,过点P作EP∥y轴交BC于点E.点MN是直线BC上两个动点且MN=AO(xM<xN).当DE长度最大时,求PM+MN﹣BN的最小值.
(2)将点A向左移动3个单位得点G,△GOC延直线BC平移运动得到三角形△G'O′C'(两三角形可重合),则在平面内是否存在点G',使得△G′BC为等腰三角形,若存在,直接写出满足条件的所有点G′的坐标,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com