精英家教网 > 初中数学 > 题目详情

【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据: ≈1.414, ≈1.732)

【答案】解:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10× =5 ≈5×1.732=8.7(米).
答:这棵树CD的高度为8.7米
【解析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题我们称之为“饮马问题”.如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?某课题组在探究这一问题时抽象出数学模型:

直线l同旁有两个定点A、B,在直线l上存在点P,使得PA+PB的值最小.

解法:作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为线段A′B的长.

(1)根据上面的描述,在备用图中画出解决“饮马问题”的图形;

(2)利用轴对称作图解决“饮马问题”的依据是   

(3)应用:如图2,已知AOB=30°,其内部有一点P,OP=12,在AOB的两边分别有C、D两点(不同于点O),使PCD的周长最小,请画出草图,并求出PCD周长的最小值;

如图3,点A(4,2),点B(1,6)在第一象限,在x轴、y轴上是否存在点D、点C,使得四边形ABCD的周长最小?若存在,请画出草图,并求其最小周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )

A.600﹣250
B.600 ﹣250米
C.350+350
D.500

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)证明四边形ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为(

A.80°
B.100°
C.60°
D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(π﹣ 0+| ﹣1|+( 1﹣2sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是(  )

A.第4张
B.第5张
C.第6张
D.第7张

查看答案和解析>>

同步练习册答案