【题目】如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.
【答案】4或4.
【解析】
①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
则AM=AD=3,
过E作EH⊥MN于H,
则四边形AEHM是矩形,
∴MH=AE=2,
∵A′H=,
∴A′M=,
∵MF2+A′M2=A′F2,
∴(3-AF)2+()2=AF2,
∴AF=2,
∴EF==4;
②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
过A′作HG∥BC交AB于G,交CD于H,
则四边形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=HG=3,
∴EG==,
∴DH=AG=AE+EG=3,
∴A′F==6,
∴EF==4,
综上所述,折痕EF的长为4或4,
故答案为:4或4.
科目:初中数学 来源: 题型:
【题目】若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与双曲线只有一个交点A(1,2),且与x轴、y轴分别交于B、C两点,AD垂直平分OB,垂足为D,
求:(1)直线、双曲线的解析式.
(2)线段BC的长;
(3)三角形BOC的内心到三边的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上,如图2,△ABC以点A为旋转中心顺时针旋转.
(1)证明:BE=CD
(2)当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的旋转角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,求出角α的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(﹣3,0),(0,﹣3).
(1)求抛物线的表达式.
(2)已知点(m,k)和点(n,k)在此抛物线上,其中m≠n,请判断关于t的方程t2+mt+n=0是否有实数根,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节期间,甲、乙两家水果店以同样的价格销售同一种水果,它们的优惠方案分别为:甲水果店,一次性购水果超过元,超过部分打七折;乙水果店,一次性购水果超过元,超过部分打五折,设水果售价为(单位:元),在甲.乙两家水果店购水果应付金额为(单位:元),(单位:元),与之间的函数关系如图所示.
(1)求甲水果店购水果应付金额与水果售价之间的函数关系式;
(2)求交点的坐标;
(3)根据图象,请直接写出春节期间选择哪家水果店购水果更优惠.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l:y=kx+b(k,b为常数,k≠0)与函数y=的图象交于点A(-1,m)
(1)求m;
(2)当k=______时,则直线l经过第一、三、四象限(任写一个符合题意的值即可);
(3)求(2)中的直线l的解析式和它与两坐标轴围成的三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以任意△ABC的边AB和AC向形外作等腰Rt△ABD和等腰Rt△ACE,F、G分别是线段BD和CE的中点,则的值等于( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
(1)求证:AE是⊙O的切线;
(2)若AE=12,CD=10,求⊙O的半径。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com