精英家教网 > 初中数学 > 题目详情
某养殖专业户计划利用房屋的一面墙修造如图所示的长方体水池,培育不同品种的鱼苗.他已准备可以修高为3m.长30m的水池墙的材料,图中EF与房屋的墙壁互相垂直,设AD的长为xm.(不考虑水池墙的厚度)
(1)请直接写出AB的长(用含有x的代数式表示);
(2)试求水池的总容积V与x的函数关系式,并写出x的取值范围;
(3)如果房屋的墙壁可利用的长度为10.5m,请利用函数图象与性质求V的最大值.
(1)由题意得:AB=30-3x(3分)

(2)由(1)知V与x的函数关系式为:V=3×x(30-3x)(5分)=-9x2+90x(6分)30-3x>0,x<10(7分)
∴x的取值范围是:0<x<10(8分)

(3)30-3x≤10.5,解得x≥6.5(9分)
V=-9x2+90x=-9(x-5)2+225(10分)
∵a=-9<0
∴函数图象是第一象限内开口向下的抛物线,对称轴为x=5,
当x≥5时,V随x的增大而减小(11分)
又∵6.5>5,由左图可知,
∴当x=6.5时,V取得最大值,(12分)
此时V最大值=-9(x-5)2+225=-9(6.5-5)2+225=204.75.(13分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C经过原点,对称轴x=-3与抛物线相交于第三象限的点M,与x轴相交于点N,且tan∠MON=3.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转180°得到抛物线C′,抛物线C′与x轴的另一交点为A,B为抛物线C′上横坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E,F分别作x轴的垂线,交折线O-B-A于点E1,F1,再分别以线段EE1,FF1为边作如图2所示的等边△EE1E2,等边△FF1F2.点E以每秒1个单位长度的速度从点O向点A运动,点F以每秒1个单位长度的速度从点A向点O运动.当△EE1E2与△FF1F2的某一边在同一直线上时,求时间t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的方程C1:y=-
1
m
(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
型 号
金 额
投资金额x(万元)
Ⅰ型设备Ⅱ型设备
x5x24
补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:以原点O为圆心、5为半径的半圆与y轴交于A、G两点,AB与半圆相切于点A,点B的坐标为(3,yB)(如图1);过半圆上的点C(xC,yC)作y轴的垂线,垂足为D;Rt△DOC的面积等于
3
8
xC2
(1)求点C的坐标;
(2)①命题“如图2,以y轴为对称轴的等腰梯形MNPQ与M1N1P1Q1的上底和下底都分别在同一条直线上,NPMQ,PQP1Q1,且NP>MQ.设抛物线y=a0x2+h0过点P、Q,抛物线y=a1x2+h1过点P1、Q1,则h0>h1”是真命题.请你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)为例进行验证;
②当图1中的线段BC在第一象限时,作线段BC关于y轴对称的线段FE,连接BF、CE,点T是线段BF上的动点(如图3);设K是过T、B、C三点的抛物线y=ax2+bx+c的顶点,求K的纵坐标yK的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,关于x的二次函数y=x2-2mx-m-2的图象与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于C点
(1)当m为何值时,AC=BC;
(2)当∠BAC=∠BCO时,求这个二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.

查看答案和解析>>

同步练习册答案