精英家教网 > 初中数学 > 题目详情
如图,已知直线l1l2l3l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=______.
过D作EF⊥l1,交l1于E,交l4于F.
∵EF⊥l1,l1l2l3l4
∴EF和l2、l3、l4的夹角都是90°,
即EF与l2、l3、l4都垂直,
∴DE=1,DF=2.
∵四边形ABCD是正方形,
∴∠ADC=90°,AD=CD,
∴∠ADE+∠CDF=90°.
又∵∠α+∠ADE=90°,
∴∠α=∠CDF.
∵AD=CD,∠AED=∠DFC=90°,
∴△ADE≌△DFC,
∴DE=CF=1,
∴在Rt△CDF中,CD=
CF2+DF2
=
5

∴sinα=sin∠CDF=
CF
CD
=
1
5
=
5
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,P是正方形ABCD内一点,将△APB绕点B顺时针旋转能与△CP′B重合,若PP′=2,则BP′=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,F为正方形ABCD的对角线AC上一点,FE⊥AD于点E,M为CF的中点.
(1)求证:MB=MD;
(2)求证:ME=MB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.
探究:设A、P两点间的距离为x.
(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是正方形的中心,则图中四块阴影部分的面积和为______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G(保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=______时,S△FGE=S△FBE;当CE=______时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为
2
,则点A的坐标为______,点C的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O处,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度反(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,设F为正方形ABCD上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为(  )
A.20B.24C.25D.26

查看答案和解析>>

同步练习册答案