精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=4,BC=,CD=9.
(1)在BC边上找一点O,过O点作OP⊥BC交AD于P,且OP2=AB•DC.求BO的长;
(2)以BC所在直线为x轴,OP所在直线为y轴,建立平面直角坐标系,求经过A、O、D三点的抛物线的解析式,并画出引抛物线的草图;
(3)在(2)中的抛物线上,连接AO、DO,证明:△AOD为直角三角形;过P点任作一直线与抛物线相交于A′(x1,y1),D′(x2,y2)两点,连接A′O、B′O,试问:△A′O′D′还为直角三角形吗?请说明理由.

【答案】分析:(1)本题可通过构建相似三角形来求解,先求出OP的长,然后过A作AF∥BC交CD于F,交OP于E,根据AB、OP、CD的长可求出DF、PE的长,然后根据△APE和△ADF相似可求出AE即BO的长.
(2)在(1)中求出了BO的长,即可得出OC的长,那么A、D的坐标就可求得.然后用待定系数法可求出抛物线的解析式.
(3)①证∠AOD=90°,可连接OA,OD通过证△AOB∽△ODC来得出∠AOB=∠ODC,进而求得∠AOB+∠DOC=∠ODC+∠DOC=90°,以此来证得∠AOD=90°.证两三角形相似时,可根据A、D的坐标求出AB,OB,OC,CD的长,然后证他们对应成比例即可.
②方法同①,可设直线的解析式为y=kx+b(k≠0),求出与抛物线的交点然后同①.
解答:解:(1)在BC上取一点O,作OP⊥BC交AD于点P.
由OP2=BA•CD=4×9=36,得OP=6(取正),
过点A作直线AE∥BC,交OP于E,交CD于F.则BO=AE=.(3分)

(2)根据题意建立直角坐标系,如图所示,则A(),B(),
O(0,0),C(),D(),
过A、O、D三点的抛物线的解析式y=ax2+bx+c满足
解得
∴抛物线的解析式为y=x2

(3)连接OA、OD,在Rt△AOB和Rt△ODC中,
=

∴Rt△AOB∽Rt△ODC,
∴∠AOD=180°-90°=90°,
∴△AOD为直角三角形.
点评:本题主要考查了直角梯形的性质、二次函数解析式的确定、相似三角形的判定和性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案