精英家教网 > 初中数学 > 题目详情
8.解方程:$\frac{5}{2}$(x-1)-3(x+1)=$\frac{x+1}{3}$+2(x-1)

分析 方程去分母,去括号,移项合并,把x系数化为1,即可求出解.

解答 解:去分母得:15(x-1)-18(x+1)=2x+2+12(x-1),
去括号得:15x-15-18x-18=2x+2+12x-12,
移项合并得:17x=-21,
解得:x=-$\frac{21}{17}$.

点评 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.把下面的推理过程补充完整,并在括号内注明理由.如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF,试说明:(1)∠C=∠F;(2)AC∥DF.
解:(1)∵AD=BE(已知)
∴AD+DB=DB+BE(等式的性质)
即AB=DE
∵BC∥EF(已知)
∴∠ABC=∠E(两直线平行,同位角相等)
又∵BC=EF(已知)
∴△ABC≌△DEF(SAS)
∴∠C=∠F,∠A=∠FDE(全等三角形的对应角相等)
∴AC∥DF(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.按要求把多项式5a3b-2ab+3ab3-2b2添上括号:
(1)把前两项括到带有“+”号的括号里,把后两项括到带有“-”号的括号里;
(2)把后三项括到带有“-”号的括号里;
(3)把四次项括到带有“+”号的括号里,把二次项括到带有“-”号的括号里.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.计算:b•bn-b2•bn-1=0,若2a-2=64,则a=8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x1-x2)(x1-2x2)=-$\frac{3}{2}$成立?若存在,求出k的值;若不存在,说明理由;
(2)求使$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-2的值为整数的实数k的整数值;
(3)若k=-2,λ=$\frac{{x}_{1}}{{x}_{2}}$,试求λ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知,如图(1),△ABC、△AED均为等腰Rt△(其顶点A、B、E重合),且∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连OF.
(1)如图(1),此时$\frac{OF}{EC}$的值=$\frac{\sqrt{2}}{2}$;
将△AED绕点A逆时针旋转45°,如图(2),此时$\frac{OF}{EC}$的值=$\frac{\sqrt{2}}{2}$;
(2)将△AED绕点A继续旋转如图(3),此时$\frac{OF}{EC}$的值又是多少?试证明你的结论?
(3)设在旋转过程中,边AD、AE交线段BC于M、N,如图(4),将△ABM沿直线AD折叠,设B的对应点为B1,连NB1,请完成图(4),并判断△MB1N的形状直角三角形(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.当线段BP的长为何值时,△PQR与△BOC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.化简:3(a+b)2-(a+b)+2(a+b)2-(a+b)2+4(a+b).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列说法中,正确的个数为(  )
①对于任何有理数m,都有m2>0;
②对于任何有理数m,都有m2=(-m)2
③对于任何有理数m,n(m≠n),都有(m-n)2>0;
④对于任何有理数m,都有m3=(-m)3
A.1B.2C.3D.0

查看答案和解析>>

同步练习册答案