【题目】如图,已知AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的周长.
【答案】(1)直线CD与⊙O相切,理由见解析;(2)2++
【解析】
(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.
(2)阴影部分的周长可由CD+BC+扇形OBD的弧长求得;扇形的半径和圆心角已求得,那么关键是求出平行四边形CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.
解:(1)直线CD与⊙O相切.理由如下:
如图,连接OD,
∵OA=OD,∠DAB=45°,
∴∠ODA=45°,
∴∠AOD=90°,
∵CD∥AB,
∴∠ODC=∠AOD=90°,即OD⊥CD,
又∵点D在⊙O上,
∴直线CD与⊙O相切;
(2)∵⊙O的半径为1,AB是⊙O的直径,
∴AB=2,
∵BC∥AD,CD∥AB,
∴四边形ABCD是平行四边形,
∴CD=AB=2,
由(1)知:△AOD是等腰直角三角形,
∵OA=OD=1,
∴BC=AD=,
∴图中阴影部分的周长=CD+BC+=2++.
科目:初中数学 来源: 题型:
【题目】如图,为的直径,于点,是上一点,且,延长至点,连接,使,延长与交于点,连结,.
(1)连结,求证:;
(2)求证:是的切线;
(3)若,,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元,三年后如果备件多余,每个以元()回收.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到如下频数分布直方图:
记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(1)以100台机器为样本,请利用画树状图或列表的方法估计不超过19的概率;
(2)以这100台机器在购买易损零件上所需费用的平均数为决策依据,在与之中选其一,当为何值时,选比较划算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.
(1)画树状图或列表,写出点P所有可能的坐标;
(2)求出点P在以原点为圆心,5为半径的圆上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:如图1,直线BC及直线BC外一点P.
求作:直线PE,使得PE∥BC.
作法:如图2.
①在直线BC上取一点A,连接PA;
②作∠PAC的平分线AD;
③以点P为圆心,PA长为半径画弧,交射线AD于点E;
④作直线PE.
所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∵AD平分∠PAC,
∴∠PAD=∠CAD.
∵PA=PE,
∴∠PAD= ,
∴∠PEA= ,
∴PE∥BC.( )(填推理依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且PQ⊥BP,PQ=BP,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是( )
A.线段B.圆弧
C.双曲线的一部分D.抛物线的一部分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)如图①,正方形中,点在边上,平分.若我们分别延长与,交于点,则易证.(不需要证明)
(探究)如图②,在矩形中,点在边的中点,点在边上,平分.求证:.
(应用)在(探究)的条件下,若,,直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知,抛物线(a0)的顶点为A(s,t)(其中s0) .
(1)若抛物线经过(2,2)和(-3,37)两点,且s=3.
①求抛物线的解析式;
②若n>3, 设点M(),N()在抛物线上,比较,的大小关系,并说明理由;
(2)若a=2,c=-2,直线与抛物线的交于点P和点Q,点P的横坐标为h,点Q的横坐标为h+3,求出b和h的函数关系式;
(3)若点A在抛物线上,且2≤s<3时,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com