分析 (1)在AC上截取AF=AP,可得△PCF≌△PNA,所以PC=PN;
(2)当P在AD上时,∠CPN的一边PN交AE的延长线于N,此时也有PC=PN过P作AC的平行线交BC的延长线于F,由平行线的性质可得出∠F=∠BCA=60°,故可得出∠F=∠APF,根据全等三角形的判定定理得出△PCF≌△NPA,由全等三角形的性质即可得出结论;
(3)无论点P在AB上如何移动,都存在△PCF≌△PNA,所以他们的数量关系不变.
解答 解:(1)PC=PN;理由如下:
如图1所示,在AC上截取AF=AP,
∵AP=AF,∠BAC=60°,
∴△APF为等边三角形,
∴PF=PA,
∵∠CPF+∠FPN=60°,∠FPN+∠NPA=60°,
∴∠CPF=∠APN,在△PCF和△PNA中,$\left\{\begin{array}{l}{∠CPF=∠APN}&{\;}\\{PF=PA}&{\;}\\{∠PFC=∠PAN}&{\;}\end{array}\right.$,
∴△PCF≌△PNA(ASA),
∴PC=PN;
(2)PC=PN;理由如下:
当P在AD上时,∠CPN的一边PN交AE的延长线于N,此时也有PC=PN;
过P作AC的平行线交BC的延长线于F,如图2所示:
∴∠F=∠BCA=60°,∠APF=∠BAC=60°,
∴∠F=∠APF,
∴CF=AP,
∵∠CPN=60°,
∴∠NPF=60°-∠FPC,
∵∠BPC=60°-∠CPF,
∴∠NPF=∠BPC,
∵∠F=∠PAN=60°,
∴∠FCP=∠APN=60°+∠APC,
在△PCF和△NPA中,$\left\{\begin{array}{l}{∠F=∠NAP}&{\;}\\{∠FCP=∠APN}&{\;}\\{CF=AP}&{\;}\end{array}\right.$,
∴△PCF≌△NPA(AAS),
∴PC=PN;
(3)线段PC、PN的数量关系保持不变;
无论点P在AB上哪个点,都有△PCF≌△PNA,
∴PC,PN的数量关系不变.
点评 本题是三角形综合题目,考查了全等三角形的判定与性质及等边三角形的性质;熟练掌握等边三角形的性质及全等三角形的性质,能够利用全等三角形求解线段之间的关系,正确作出辅助线是解答本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com