精英家教网 > 初中数学 > 题目详情

分解因式:a2-6ab+9b2=________.

(a-3b)2
分析:直接利用完全平方公式进行因式分解即可.完全平方公式:(a±b)2=a2±2ab+b2
解答:原式=a2-6ab+(3b)2=(a-3b)2
故答案为(a-3b)2
点评:本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

24、阅读并解决问题.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像这样,先添-适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是实数,试比较x2-4x+5与-x2+4x-4的大小,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                   ②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001(4分)
问题2:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.
此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、分解因式:a2-6a=
a(a-6);

化简:(x+3)2-x2=
6x+9

查看答案和解析>>

科目:初中数学 来源: 题型:

对于形如x2+2x+1这样的二次三项式,可以用公式法将它分解成(x+1)2的形式.但对于二次三项式x2+2x-3,就不能直接运用公式了.此时,我们可以在二次三项式x2+2x-3中先加上一项1,使它与x2+2x的和成为一个完全平方式,再减去1,整个式子的值不变,于是有:x2+2x-3=(x2+2x+1)-1-3=(x+1)2-22=(x+3)(x-1).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
请利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读与理解:
(1)先阅读下面的解题过程:
分解因式:a2-6a+5
解:方法(1)原式=a2-a-5a+5
=(a2-a)+(-5a+5)
=a(a-1)-5(a-1)
=(a-1)(a-5)
方法(2)原式=a2-6a+9-4
=(a-3)2-22
=(a-3+2)(a-3-2)
=(a-1)(a-5)
再请你参考上面一种解法,对多项式x2+4x+3进行因式分解;
(2)阅读下面的解题过程:
已知m2+n2-4m+6n+13=0,试求m与n的值.
解:由已知得:m2-4m+4+n2+6n+9=0
因此得到:(m-2)2+(n+3)2=0
所以只有当(m-n)=0并且(n+3)=0上式才能成立.
因而得:m=2 并且 n=-3
请你参考上面的解题方法解答下面的问题:
已知:x2+y2+2x-4y+5=0,试求xy的值.

查看答案和解析>>

同步练习册答案