精英家教网 > 初中数学 > 题目详情
下列方程是关于x的一元二次方程的是( )
A.x2+2x-3
B.
C.x2+2x=x2-1
D.x2-4x-1=0
【答案】分析:一元二次方程必须同时满足三个条件:
①整式方程,即等号两边都是整式,方程中如果没有分母,那么分母中无未知数;
②只含有一个未知数;
③未知数的最高次数是2.
解答:解:A、是代数式,不是方程,故本选项错误;
B、不是整式方程,故本选项错误;
C、化简后未知数的次数不为2,故本选项错误;
D、符合一元二次方程的定义,故本选项正确;
故选D.
点评:本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

探究发现:
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1•x2
(1)
(2)
(3)
(1)请用文字语言概括你的发现.
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=
-p
-p
,x1•x2
q
q

(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:013

下列说法正确的是

[  ]

A.方程是关于x的一元二次方程

B.方程的常数项是4

C.若一元二次方程的常数项为0,则0必是它的一个根

D.当一次项系数为0时,一元二次方程总有非零解

查看答案和解析>>

同步练习册答案