精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x-4-3-2-1123456
y241583-13815 
(1)观察表中数据,当x=6时,y的值是______;
(2)这个二次函数与x轴的交点坐标是______;
(3)代数式++(a+b+c)(a-b+c)的值是______;
(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是______.
【答案】分析:(1)根据抛物线的对称性直接通过x、y的数量关系表就可以求出x=6时y的值是24.
(2)观察数量关系表就可以得到y=0时x的值,就是图象与x轴的交点坐标.
(3)将原式变形后得:-+(a+b+c)(a-b+c),由根与系数的关系而y=0时,原方程得两根之和-=0+2=2
由上表可知,当x=1时a+b+c=-1,当x=-1时a-b+c=3,∴很容易计算出其值.
(4)由题意可知s<t,当y=0时x=0或2,当y=24时,x=-4(不符合题意)或6,就可以求得s、t的对应值,从而求出反比例函数的解析式.
解答:解:(1)根据抛物线图象的对称性由表中的数据可以得出:
当x=6时,y的值是:24;

(2)∵二次函数与x轴的交点坐标就是y=0时所对应的x的值,由表中的数据可得:
二次函数与x轴的交点坐标是(0,0),(2,0);

(3)原式=-+(a+b+c)(a-b+c),当y=0时,由根与系数的关系及表中的数据得:=0+2=2,
a+b+c是x=1时y的值由表中数据得y=-1,∴a+b+c=-1,
a-b+c是x=-1时y的值由表中的数据得y=3,∴a-b+c=3,
∴原式=2+(-1)×3=2-3=-1;

(4)∵s、t是两个不相等的实数,s≤x≤t,
∴s<t.
∵当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,
∴由表中的数据可知y=0时,x=0或2,当y=24时,x=-4或6,
∴s=-4,t=0;s=-4,t=2;s=2,t=6
∴(s+1=-3,t+1=1);(s+1=-3,t+1=3);(s+1=3,t+1=7)
∵s=-4,t=2时y的最小值为-1.抛物线经过(-3,1),抛物线的顶点坐标是(1,-1),
∴最小值为-1,(舍去)
∴经过点(s+1,t+1)的反比例函数解析式是y=-或y=
故答案为:24,(0,0),(2,0),-1,y=-或y=
点评:本题是一道关于二次函数的综合试题,考查了抛物线图象的对称性,二次函数的极值,二次函数与一元二次方程的关系及待定系数法求反比例函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案