【题目】将下列多项式分解因式,结果中不含因式x﹣1的是( )
A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1
科目:初中数学 来源: 题型:
【题目】如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,四边形ABCD四个顶点的坐标分别为A(-2,0),B(-1,2),C(3,3),D(4, 0).
(1)画出四边形ABCD;
(2)把四边形ABCD向下平移4个单位长度,再向左平移2个单位长度得到四边形A′B′C′D′,画出四边形A′B′C′D′,并写出C′的坐标。
(3)求出四边形ABCD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】截至去年底,国家开发银行对“一带一路”沿线国家累计贷款超过1600亿美元,其中1600亿用科学记数法表示为( )
A. 16×1010 B. 1.6×1010 C. 1.6×1011 D. 0.16×1012
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE的延长线于点G.
(1)求证:DB=BG;
(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AB、CD相交于点O,AO=BO,AC∥DB。那么OC与OD相等吗?说明你的理由。小明的解题过程如下,请你说明每一步的理由。
解:OC=OD,理由如下:
∵AC∥DB( )
∴∠A=∠B,∠C=∠D( )
在△AOC和△BOD中
∴△AOC≌△BOD ( )
∴OC=OD( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB和抛物线交于点A(-4,0),B(0,4),且点B是抛物线的顶点.
(1)求直线AB和抛物线的解析式.
(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.
(3)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列等式从左到右的变形,属于因式分解的是( )
A.a(x﹣y)=ax﹣ay
B.x2+2x+1=x(x+2)+1
C.(x+1)(x+3)=x2+4x+3
D.x3﹣x=x(x+1)(x﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的有( )
①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.
A. .1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com