分析 根据AC、BA、BC与⊙O相切于点D、F、E;由勾股定理可得:BF=BE,AF=AD,CD=CE;可用DC分别表示出BE、BF的长,根据BF=BE,得出CD的表达式;连接OD、OE;易证得四边形ODCE是正方形,即OE=OD=CD,由此可求出⊙O的半径.
解答 解:∵AC⊥BC,
∴∠ACB=90°,
∵BC=4,AC=3,
∴AB=5,
连接OD、OE;
∵AC、BE是⊙O的切线,
∴∠ODC=∠OEC=∠DCE=90°;
∴四边形ODCE是矩形;
∵OD=OE,
∴矩形ODCE是正方形;
即OE=OD=CD;
设CD=CE=x,则AD=AF=3-x;
连接OB,OF,
由勾股定理得:BF2=OB2-OF2,BE2=OB2-OE2,
∵OB=OB,OF=OE,
∴BF=BE,
则BA+AF=BC+CE,5+3-x=4+x,即x=2;
故⊙O的半径为2.
点评 本题考查了切线的性质,勾股定理,正方形的判定和性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人数变化 单位:万人 | +1.6 | +0.8 | -0.3 | -0.45 | 0.6 | +0.2 | -1.2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
纸片的边长n | 2 | 3 | 4 | 5 | 6 |
使用的纸片张数 | 11 | 10 | 9 | 8 | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com