精英家教网 > 初中数学 > 题目详情
2.先化简,再计算:$\frac{x^2-1}{x^2+x}÷(x-\frac{2x-1}{x})$,其中x=$\sqrt{2}$.

分析 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.

解答 解:原式=$\frac{(x+1)(x-1)}{x(x+1)}$÷$\frac{{x}^{2}-2x+1}{x}$=$\frac{(x+1)(x-1)}{x(x+1)}$•$\frac{x}{(x-1)^{2}}$=$\frac{1}{x-1}$,
当x=$\sqrt{2}$时,原式=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1.

点评 此题考查了分式的化简运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.把下列各式分解因式:
(1)3x-12x3
(2)(x2+4)2-16x2
(3)y(y+4)-4(y+1)
(4)$2({x^2}-\frac{1}{2})-{x^4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.把多项式4y2-64因式分解得4(y+4)(y-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在某观测站A的正前方某海域B处有一艘船舶正向观测站驶来,并在观测站A测得俯角∠DAB=11°,10分钟后,该船舶到达C点,此时在观测站A测得俯角∠DAC=20°,已知观测站A距离海平面200米.求船舶的平均速度?(参考数据tan11°≈0.20,cos20°≈0.90,tan20°≈0.40)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,并在抛物线的对称轴上找一点P,使三角形PBD的周长最小,求出点D和点P的坐标;
(3)在直线CD下方的抛物线上是否存在一点E,使得△DCE的面积最大,若有求出点E的坐标及面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若函数y=x2-3|x-1|-4x-3-b(b为常数)的图象与x轴恰好有三个交点,则常数b的值为-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
(2)请判断线段MD与MN的数量与位置关系,并证明;
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则第(2)题中的结论还成立吗?请直接回答“成立”或“不成立”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.综合与实践
问题情境
   在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现
(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形;
(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;
实践探究
(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;
(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.化简:(1-$\frac{1}{m+1}$)•(m+1)=m.

查看答案和解析>>

同步练习册答案