分析 ①根据分式的乘除法可以解答本题;
②根据分式的减法和除法可以解答本题.
解答 解:①$\frac{2x-6}{{4-4x+{x^2}}$÷(x+3)•$\frac{{{x^2}+x-6}}{3-x}$
=$\frac{2(x-3)}{(2-x)^{2}}•\frac{1}{x+3}•\frac{(x+3)(x-2)}{3-x}$
=$-\frac{2}{x-2}$,
可能的错误是,有的可能先计算(x+3)•$\frac{{{x^2}+x-6}}{3-x}$,有的把结果的符号漏掉;
②($\frac{a-2}{{{a^2}+2a}}$-$\frac{a-1}{{{a^2}+4a+4}}$)÷$\frac{a-4}{a+2}$
=$[\frac{a-2}{a(a+2)}-\frac{a-1}{(a+2)^{2}}]•\frac{a+2}{a-4}$
=$\frac{(a-2)(a+2)-a(a-1)}{a(a+2)^{2}}•\frac{a+2}{a-4}$
=$\frac{{a}^{2}-4-{a}^{2}+a}{a(a+2)(a-4)}$
=$\frac{a-4}{a(a+2)(a-4)}$
=$\frac{1}{a(a+2)}$
=$\frac{1}{{a}^{2}+2a}$.
点评 本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.
科目:初中数学 来源: 题型:选择题
A. | (3,3) | B. | (1,4) | C. | (3,1) | D. | (4,1) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2x+1-10x-1=1 | B. | 4x+2-10x+1=1 | C. | 4x+2-10x+1=6 | D. | 4x+2-10x-1=6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
x | … | 0 | 1 | 2 | 3 | … |
y | … | -1 | 2 | 3 | 2 | … |
A. | y1≥y2 | B. | y1>y2 | C. | y1≤y2 | D. | y1<y2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com