精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线的顶点为,直线与抛物线交于点(在点的左侧)

1)求点坐标;

2)横、纵坐标都是整数的点叫做整点.记线段及抛物线在两点之间的部分围成的封闭区域(不含边界)记为

①当时,结合函数图象,直接写出区域内的整点个数;

②如果区域内有2个整点,请求出的取值范围.

【答案】1Aa0);(2)①4;②

【解析】

1)根据抛物线顶点坐标求法求解即可;

2)①画出图像,根据图像以及整点的概念求解即可;

②由①推出a0,分别求出有2个整点和3个整点时a的取值,再得出取值范围.

解:(1)∵抛物线的解析式为:

∴可得顶点坐标为:Aa0);

2)①∵a=0

∴抛物线表达式为:

解得:x1=x2=

∴区域内的整点有(01),(02),(12),(13)共4个整点;

②由①可知当a=0时有4个整点,

a0时,对称轴在y轴右侧,此时有更多整点,

a0

∵抛物线的解析式为:

∴抛物线的顶点在x轴,开口向上,

当抛物线在直线y=x+3左侧且两者相切时,没有整点,

当抛物线向右平移时,第一个整点为(-11),代入抛物线,

解得:a=-20(舍),

第二个整点为(02),代入抛物线,

解得:a=(舍)或

第三个整点为(01),代入抛物线,

解得:a=1(舍)或-1

综上:a的取值范围是:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,PBA延长线上一点,点C在⊙O上,连接PCD为半径OA上一点,PDPC,连接CD并延长交⊙O于点E,且E的中点.

1)求证:PC是⊙O的切线;

2)求证:CDDE2ODPD

3)若AB8CDDE15,求PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售10A型和20B型加湿器的利润为2500元,销售20A型和10B型加湿器的利润为2000

(1)求每台A型加湿器和B型加湿器的销售利润;

(2)该商店计划一次购进两种型号的加湿器共100台,其中B型加湿器的进货量不超过A型加湿器的2倍,设购进A型加湿器x台.这100台加湿器的销售总利润为y

①求y关于x的函数关系式;

②该商店应怎样进货才能使销售总利润最大?

(3)实际进货时,厂家对A型加湿器出厂价下调m(0<m<100)元,且限定商店最多购进A型加湿器70台,若商店保持两种加湿器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台加湿器销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一大、一小两个等腰直角三角形拼在一起,,连接

1)如图1,三点在同一条直线上,则的关系是

2)如图2,若三点不在同一条直线上,相交于点,连接,猜想之间的数量关系,并给予证明;

3)如图3,在(2)的条件下作的中点,连接,直接写出之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明同学设计的过直线外一点作已知直线的平行线的尺规作图过程.

已知:如图,直线和直线外一点

求作:直线,使直线直线

作法:如图,

①在直线上任取一点,作射线

②以为圆心,为半径作弧,交直线于点,连接

③以为圆心,长为半径作弧,交射线于点;分别以为圆心,大于长为半径作弧,在的右侧两弧交于点

④作直线

所以直线就是所求作的直线.

根据上述作图过程,回答问题:

1)用直尺和圆规,补全图中的图形;

2)完成下面的证明:

证明:由作图可知平分

(_______________________________)(填依据1)

,∴直线直线(______________________)(填依据2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,分别是边上任意点.以线段为边,在上方作等边,取边的中点,连接,则的最小值是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各名学生进行了调查,调查结果如图所示,请你根据图中的信息回答问题.

1)在被调查的学生中,参加综合实践活动的有多少人,参加科技活动的有多少人;

2)如果本市有万名初中学生,请你估计参加科技活动的学生约有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)校园诗歌大赛结束后张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理并分别绘制成扇形统计图和频数直方图部分信息如下

(1)本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为

(2)赛前规定成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78试判断他能否获奖并说明理由;

(3)成绩前四名是2名男生和2名女生若从他们中任选2人作为获奖代表发言试求恰好选中11女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20203停课不停学期间,某校采用简单随机抽样的方式调查本校学生参加第一天线上学习的时长,将收集到的数据制成不完整的频数分布表和扇形图,如下所示:

组别

学习时长(分钟)

频数(人)

1

x≤40

3

2

40x≤60

6

3

60x≤80

m

4

80x≤100

18

5

100x≤120

14

1)求mn的值;

2)学校有学生2400人,学校决定安排老师给““线上学习时长x≤60分钟范围内的学生打电话了解情况,请你根据样本估计学校学生线上学习时长x≤60分钟范围内的学生人数.

查看答案和解析>>

同步练习册答案