精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x轴交于A (-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标.

【答案】分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值;
(2)根据抛物线的解析式可得出C点的坐标,由△CEF和△BEF等高,则面积比等于对应底边比,由此可得出CF=2BF;然后由平行线分线段成比例定理,即可求得BE、AB的比例关系,由此可求出E点坐标;
解答:解:(1)∵抛物线与x轴交于A (-4,0)和B(1,0)两点,

解得:
故此抛物线的解析式为:y=x2+x-2;

(2)由(1)知:C(0,-2);
∵S△CEF=2S△BEF
∴CF=2BF,BC=3BF;
∵EF∥AC,
==
∵AB=5,
∴BE=
∴OE=BE-OB=
∴点E的坐标为:(-,0).
点评:此题考查了待定系数法求二次函数的解析式、平行线分线段成比例定理以及等高三角形面积的比等于其对应底的比等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中点,如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-1,0),与y轴交于点C(0,3),且对称轴方程为x=1
(1)求抛物线与x轴的另一个交点B的坐标;
(2)求抛物线的解析式;
(3)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(4)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-1,0),E(3,0),与y轴交于点B,且该精英家教网函数的最大值是4.
(1)抛物线的顶点坐标是(
 
 
);
(2)求该抛物线的解析式和B点的坐标;
(3)设抛物线顶点是D,求四边形AEDB的面积;
(4)若抛物线y=mx2+nx+p与上图中的抛物线关于x轴对称,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?

查看答案和解析>>

同步练习册答案