【题目】如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为米.
【答案】4
【解析】解:如图,∵两次日照的光线互相垂直,
∴∠E+∠F=90°,∠E+∠ECD=90°,
∴∠ECD=∠F,
又∵∠CDE=∠FDC=90°,
∴△CDE∽△FDC,
∴ = ,
由题意得,DE=2,DF=8,
∴ = ,
解得CD=4,
即这颗树的高度为4米.
所以答案是:4.
【考点精析】关于本题考查的相似三角形的应用和平行投影,需要了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解;太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影;作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】西安市在创建文明城区的活动中,有两个长度相等的彩色砖道铺设任务,分别交给甲、乙两个施工队同时进行施工,如图是反映所铺设的彩色砖道的长度y(米)与施工时间x(小时)之间关系的部分图象,请解答下列问题:
(1)求乙队在0≤x≤6的时段内y与x的函数关系式.
(2)如果甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/小时,结果两队同时完成了任务,求甲队从开始施工到完成所铺设的彩色砖道的长度为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系并说明理由;
(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PM^AD,PN^CD,垂足分别为M、N。
(1)求证:ADB=CDB;
(2)若ADC=90°,求证:四边形MPND是正方形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知第一象限内的点A在反比例函数y= 的图象上,第二象限内的点B在反比例函数y= 的图象上,且OA⊥OB,cosA= ,则k的值为( )
A.﹣3
B.﹣4
C.﹣
D.﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).若点C落在AB边下方的点E处,则△ADE的周长p的取值范围是( )
A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.
(1)如图,若α=21°,∠ABC=32°,且AP交BC于点P,试探究线段AB、AC与PB之间的数量关系,并对你的结论加以证明;
(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com