精英家教网 > 初中数学 > 题目详情
14.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{3}{2}$D.$\frac{2\sqrt{3}}{3}$

分析 连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=$\frac{1}{2}$AD,∠ODE=$\frac{1}{2}$∠ADB=30°,根据锐角三角函数的定义即可得出结论.

解答 解:连接BD,作OE⊥AD,连接OD,
∵⊙O为四边形ABCD的外接圆,∠BCD=120°,
∴∠BAD=60°.
∵AD=AB=2,
∴△ABD是等边三角形.
∴DE=$\frac{1}{2}$AD=1,∠ODE=$\frac{1}{2}$∠ADB=30°,
∴OD=$\frac{DE}{cos30°}$=$\frac{2\sqrt{3}}{3}$.
故选D.

点评 本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:m(m-2)-(m-1)2+m,其中m=-$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若抛物线y=x2-4x+2-t(t为实数)在0<x<$\frac{5}{2}$的范围内与x轴有公共点,则t的取值范围为(  )
A.-2<t<2B.-2≤t<2C.-$\frac{7}{4}$<t<2D.t≥-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为(  )
9:00-10:0010:00-11:0014:00-15:0015:00-16:00
进馆人数50245532
出馆人数30652845
A.9:00-10:00B.10:00-11:00C.14:00-15:00D.15:00-16:00

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

已知抛物线y=-$\frac{2\sqrt{3}}{3}$x2-$\frac{4\sqrt{3}}{3}$x+2$\sqrt{3}$与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“梦想直线”的解析式为y=-$\frac{2\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$,点A的坐标为(-2,2$\sqrt{3}$),点B的坐标为(1,0);
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为${y}_{1}=\left\{\begin{array}{l}{{k}_{1}x(0≤x<600)}\\{{k}_{2}x+b(600≤x≤1000)}\end{array}\right.$,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,梯形ABCD中,AB∥CD,∠D=(  )
A.120°B.135°C.145°D.155°

查看答案和解析>>

同步练习册答案