精英家教网 > 初中数学 > 题目详情
15.已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O与BC相交于点E,在AC上取一点D,使得DE=AD,
(1)求证:DE是⊙O的切线.
(2)当BC=10,AD=4时,求⊙O的半径.

分析 (1)连接OE、DE,证明△AOD≌△EOD,得到∠OED=∠BAC=90°,证明结论;
(2)根据全等三角形的性质得到∠AOD=∠EOD,根据三角形的外角的性质得到∠BEO=∠EOD,得到OD∥BC,求出OD,根据勾股定理计算即可.

解答 (1)证明:连接OE、DE,
在△AOD和△EOD中,
$\left\{\begin{array}{l}{OA=OE}\\{DA=DE}\\{OD=OD}\end{array}\right.$,
∴△AOD≌△EOD(SSS),
∴∠OED=∠BAC=90°,
∴DE是⊙O的切线;
(2)解:∵△AOD≌△EOD,
∴∠AOD=∠EOD,
∵OB=OE,
∴∠B=∠OEB,
∵∠AOE=∠B+∠OEB,
∴∠BEO=∠EOD,
∴OD∥BC,又AO=BO,
∴OD=$\frac{1}{2}$BC=5,
由勾股定理得,AO=$\sqrt{O{D}^{2}-A{D}^{2}}$=3,
则⊙O的半径为3.

点评 本题考查的是切线的判定、全等三角形的判定和性质、三角形中位线定理的应用,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图所示:在长方形中放置了6个正方形,图中给出了相关数据,请你仔细观察图形,利用方程思想求出图中的阴影部分的面积的和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中.O为坐标原点,直线y=-$\frac{3}{4}$x+3与x轴、y轴分别交于A,B两点.点P从点A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.过点P与直线AB垂直的直线与y轴交于点E.
(1)当t为何值时,点P到直线AB的距离为$\frac{12}{5}$.
(2)在点P的运动的过程中,是否存在点P,使△EOP≌AOB?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读下列材料并填空:
(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?
我们知道,两点确定一条直线.平面上有2个点时,可以画$\frac{2×1}{2}$=1条直线,平面内有3个点时,一共可以画$\frac{3×2}{2}$=3条直线,平面上有4个点时,一共可以画$\frac{4×3}{2}$=6条直线,平面内有5个点时,一共可以画10条直线,…平面内有n个点时,一共可以画$\frac{n(n-1)}{2}$条直线.
(2)运用:某足球比赛中有22个球队进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图是一块长、宽、高分别为4cm、2cm和1cm的长方体木块,一只蚂蚁要从长方体木块的-个顶点A处,沿着长方体木块的表面爬到长方体木块上和顶点A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知一次函数y=kx+b的图象经过点(-1,5),且与正比例函数y=x的图象相交于点(2,a),求:
(1)a的值;
(2)k,b的值;
(3)这两个函数图象与x轴所围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知a、b、c、d是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,O为坐标原点,⊙O的半径为1,点P是直线y=-2x-6上的动点,过点P作⊙O的切线PA、PB,A、B为切点,连接OA、OB,则四边形OAPB的面积的最小值为$\frac{\sqrt{155}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.求下列各式的值.
(1)±$\root{3}{2\frac{10}{27}}$;
(2)-$\root{3}{-\frac{1}{8}}$;
(3)$\sqrt{0.0121}$.

查看答案和解析>>

同步练习册答案