精英家教网 > 初中数学 > 题目详情
13.如图,在△ABC和△DCB中,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为AB=CD.(填一个正确的即可)

分析 此题是一道开放型的题目,答案不唯一,如AB=CD或∠ACB=∠DBC.

解答 解:AB=CD,
理由是:∵在△ABC和△DCB中
$\left\{\begin{array}{l}{AC=BD}\\{AB=CD}\\{BC=BC}\end{array}\right.$
∴△ABC≌△DCB(SSS),
故答案为:AB=CD.

点评 本题考查了全等三角形的判定的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知关于x的不等式(3a-2)x+2<3的解集是x<2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在△ABC中,AB=5,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D,E均与端点不重合),如果△CDE与△ABC相似,那么CE=2,$\frac{25}{8}$,$\frac{36}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在?ABCD中,延长CD到点E,使DE=$\frac{1}{2}$CD,BE交AD于点F,则△DEF和△ABF的面积比为(  )
A.1:4B.1:2C.1:3D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知三角形三边之长能求出三角形的面积吗?
海伦公式告诉你计算的方法是:S=$\sqrt{p(p-a)(p-b)(p-c)}$,其中S表示三角形的面积,a,b,c分别表示三边之长,p表示周长之半,即p=$\frac{a+b+c}{2}$.
我国宋代数学家秦九韶提出的“三斜求积术”与这个公式基本一致,所有这个公式也叫“海伦-秦九韶公式”.
请你利用公式解答下列问题.
(1)在△ABC中,已知AB=5,BC=6,CA=7,求△ABC的面积;
(2)计算(1)中△ABC的BC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图是拦水坝的横断面.斜坡AB的坡度为1:2,BC⊥AE,垂足为点C,AC长为12米,则斜坡AB的长为6$\sqrt{5}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示的象棋盘上,若“士”的坐标是(-2,-2),“相”的坐标是(3,2),则“炮”的坐标是(-3,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.点P(-4,3)在哪个象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),△ABC与△DOE的位似中心是M.
(1)在图中画出M点.
(2)求出M点的坐标.

查看答案和解析>>

同步练习册答案