精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径0C为2,则弦BC的长为(  )
A、1
B、
3
C、2
D、2
3
分析:由圆周角定理得∠BOC=2∠BAC=120°,过O点作OD⊥BC,垂足为D,由垂径定理可知∠BOD=
1
2
∠BOC=60°,BC=2BD,解直角三角形求BD即可.
解答:精英家教网解:过O点作OD⊥BC,垂足为D,
∵∠BOC,∠BAC是
BC
所对的圆心角和圆周角,
∴∠BOC=2∠BAC=120°,
∵OD⊥BC,
∴∠BOD=
1
2
∠BOC=60°,BC=2BD,
在Rt△BOD中,BD=OB•sin∠BOD=2×
3
2
=
3

∴BC=2BD=2
3

故选D.
点评:本题考查了圆周角定理,垂径定理,解直角三角形的运用.关键是利用圆周角定理,垂径定理将条件集中在直角三角形中,解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,OD⊥AB于点D、交⊙O于点E,∠C=60°,如果⊙O的半径为2,那么OD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,AD是△ABC的高,且AD平分∠BAC,请指出∠B与∠C的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔东南州)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.

查看答案和解析>>

同步练习册答案