如图,在平面直角坐标系中,抛物线经过A(3,0),B(0,-3)两点,点P是直线AB上一动点,过点P作轴的垂线交抛物线于点M,设点P的横坐标为t,
1.分别求直线AB和这条抛物线的解析式(4分)
2.若点P在第四象限,连结BM、AM,当线段PM最长时,求的面积。(4分)
③ 3.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由(3分)。
1.把A(3,0)B(0,﹣3)代入y=x2+mx+n,得
解得,
所以抛物线的解析式是y=x2﹣2x﹣3.
设直线AB的解析式是y=kx+b,
把A(3,0)B(0,﹣3)代入y=kx+b,得,
解得,
所以直线AB的解析式是y=x﹣3;(4分)
2.设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),
因为p在第四象限,
所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,
当t=﹣=时,二次函数的最大值,即PM最长值为=,
则S△ABM=S△BPM+S△APM==.(4分)
3.存在,理由如下:
∵PM∥OB,
∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,
①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.
②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;
③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.
所以P点的横坐标是或.
解析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
科目:初中数学 来源: 题型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com