精英家教网 > 初中数学 > 题目详情
如图(1),在平面直角坐标系中二次函数y=-x2+bx+c的图象经过点A(1,-2),B(3,-1)
(1)求抛物线的解析式及顶点C的坐标;
(2)请问在y轴上是否存在点P,使得S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由;
(3)请在图(2)上用尺规作图的方式探究抛物线上是否存在点Q,使得△QAB是等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由(不用证明).
(1)由l2的解析式为y=-x2+bx+c,联立方程组:
-1+b+c=-2
-9+3b+c=-1

解得得:b=
9
2
,c=-
11
2

则l2的解析式为y=-x2+
9
2
x-
11
2
=-(x-
9
4
2-
7
16

点C的坐标为(
9
4
,-
7
16
).

(2)如答图1,过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F,
则AD=2,CF=
7
16
,BE=1,DE=2,DF=
5
4
,FE=
3
4

得:S△ABC=S梯形ABED-S梯形BCFE-S梯形ACFD=
15
16

延长BA交y轴于点G,直线AB的解析式为y=
1
2
x-
5
2
,则点G的坐标为(0,-
5
2
),设点P的坐标为(0,h),
①当点P位于点G的下方时,PG=-
5
2
-h,连接AP、BP,
则S△ABP=S△BPG-S△APG=-
5
2
-h,又S△ABC=S△ABP=
15
16
,得h=-
55
16
,点P的坐标为(0,-
55
16
).
②当点P位于点G的上方时,PG=
5
2
+h,同理h=-
25
16
,点P的坐标为(0,-
25
16
).
综上所述所求点P的坐标为(0,-
55
16
)或(0,-
25
16
)(7分)

(3)作图痕迹如答图2所示.
由图可知,
当以AB为腰以A为顶点时,以点A为圆心,以AB为半径画圆与抛物线交与Q1
当以AB为腰以B为顶点时,以点b为圆心,以AB为半径画圆与抛物线交与Q2
当以AB为底边时,作AB的垂直平分线交抛物线于Q3,Q4
故满足条件的点有Q1、Q2、Q3、Q4,共4个可能的位置.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出y>0时,x的取值范围______;
(2)写出y随x的增大而减小的自变量x的取值范围______;
(3)求函数y=ax2+bx+c的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).
(1)试求a,b所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的
5
4
倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.
(1)求a的值;
(2)求A,B的坐标;
(3)以AC,CB为一组邻边作?ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,AB=3,AD=
5
,高DE=2,建立如图所示的平面直角坐标系,其中点A与坐标原点重合,CB的延长线与y轴交于点F,且F(0,-6).
(1)求点D的坐标;
(2)求经过点B、D、F的抛物线的解析式;
(3)判断平行四边形ABCD的对角线交点G是否在(2)中的抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

美廉客超市以30元/千克的价格购进一批新疆和田玉枣,如果以35元/千克的价格销售,那么每天可售出300千克;如果以40元/千克的价格销售,那么每天可售出200千克,根据销售经验可以知道,每天的销售量y(千克)与销售单价x(元)(x≥30)存在一次函数关系.
(1)请你求出y与x之间的函数关系式;
(2)设该超市销售新疆和田玉枣每天获得的利润为w元,求当销售单价为多少时,每天获得的利润最大,最大利润是多少?
(3)如果物价局规定商品的利润率不能高于40%,而超市希望每天销售新疆和田玉枣的利润不低于1500元,请你帮助超市确定这种枣的销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

要修建一个圆形喷水池,在池中心竖直安装一根带有喷水头的水管.喷出的水所形成的水流的形状是抛物线,如果要求水流的最高点到水管的水平距离为1m,距离地面的高度为3m,水流落地处到水管的水平距离是3m,求这根带有喷水头的水管在地面以上的高度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为(  )
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

同步练习册答案